Commit 2b583157 authored by Chris Palmer's avatar Chris Palmer Committed by Commit Bot

Documentation tweaking for Partition Alloc.

A foolish consistency is the hobgoblin of little minds. #welp

Bug: None
Change-Id: Ia174e3fa99252a7931429c22d769872bc2f0c3bd
Reviewed-on: https://chromium-review.googlesource.com/c/1357625
Commit-Queue: Chris Palmer <palmer@chromium.org>
Reviewed-by: default avatarKentaro Hara <haraken@chromium.org>
Cr-Commit-Position: refs/heads/master@{#613253}
parent d80f1a22
......@@ -17,90 +17,106 @@ static const size_t kAllocationGranularity = sizeof(void*);
static const size_t kAllocationGranularityMask = kAllocationGranularity - 1;
static const size_t kBucketShift = (kAllocationGranularity == 8) ? 3 : 2;
// Underlying partition storage pages are a power-of-two size. It is typical
// for a partition page to be based on multiple system pages. Most references to
// "page" refer to partition pages.
// We also have the concept of "super pages" -- these are the underlying system
// allocations we make. Super pages contain multiple partition pages inside them
// and include space for a small amount of metadata per partition page.
// Inside super pages, we store "slot spans". A slot span is a continguous range
// of one or more partition pages that stores allocations of the same size.
// Underlying partition storage pages (`PartitionPage`s) are a power-of-2 size.
// It is typical for a `PartitionPage` to be based on multiple system pages.
// Most references to "page" refer to `PartitionPage`s.
//
// *Super pages* are the underlying system allocations we make. Super pages
// contain multiple partition pages and include space for a small amount of
// metadata per partition page.
//
// Inside super pages, we store *slot spans*. A slot span is a continguous range
// of one or more `PartitionPage`s that stores allocations of the same size.
// Slot span sizes are adjusted depending on the allocation size, to make sure
// the packing does not lead to unused (wasted) space at the end of the last
// system page of the span. For our current max slot span size of 64k and other
// constant values, we pack _all_ PartitionRootGeneric::Alloc() sizes perfectly
// up against the end of a system page.
// system page of the span. For our current maximum slot span size of 64 KiB and
// other constant values, we pack _all_ `PartitionRootGeneric::Alloc` sizes
// perfectly up against the end of a system page.
#if defined(_MIPS_ARCH_LOONGSON)
static const size_t kPartitionPageShift = 16; // 64KB
static const size_t kPartitionPageShift = 16; // 64 KiB
#else
static const size_t kPartitionPageShift = 14; // 16KB
static const size_t kPartitionPageShift = 14; // 16 KiB
#endif
static const size_t kPartitionPageSize = 1 << kPartitionPageShift;
static const size_t kPartitionPageOffsetMask = kPartitionPageSize - 1;
static const size_t kPartitionPageBaseMask = ~kPartitionPageOffsetMask;
// TODO: Should this be 1 if defined(_MIPS_ARCH_LOONGSON)?
static const size_t kMaxPartitionPagesPerSlotSpan = 4;
// To avoid fragmentation via never-used freelist entries, we hand out partition
// freelist sections gradually, in units of the dominant system page size.
// What we're actually doing is avoiding filling the full partition page (16 KB)
// freelist sections gradually, in units of the dominant system page size. What
// we're actually doing is avoiding filling the full `PartitionPage` (16 KiB)
// with freelist pointers right away. Writing freelist pointers will fault and
// dirty a private page, which is very wasteful if we never actually store
// objects there.
static const size_t kNumSystemPagesPerPartitionPage =
kPartitionPageSize / kSystemPageSize;
static const size_t kMaxSystemPagesPerSlotSpan =
kNumSystemPagesPerPartitionPage * kMaxPartitionPagesPerSlotSpan;
// We reserve virtual address space in 2MB chunks (aligned to 2MB as well).
// These chunks are called "super pages". We do this so that we can store
// metadata in the first few pages of each 2MB aligned section. This leads to
// a very fast free(). We specifically choose 2MB because this virtual address
// block represents a full but single PTE allocation on ARM, ia32 and x64.
// We reserve virtual address space in 2 MiB chunks (aligned to 2 MiB as well).
// These chunks are called *super pages*. We do this so that we can store
// metadata in the first few pages of each 2 MiB-aligned section. This makes
// freeing memory very fast. We specifically choose 2 MiB because this virtual
// address block represents a full but single PTE allocation on ARM, ia32 and
// x64.
//
// The layout of the super page is as follows. The sizes below are the same
// for 32 bit and 64 bit.
// The layout of the super page is as follows. The sizes below are the same for
// 32- and 64-bit platforms.
//
// | Guard page (4KB) |
// | Metadata page (4KB) |
// | Guard pages (8KB) |
// | Slot span |
// | Slot span |
// | ... |
// | Slot span |
// | Guard page (4KB) |
// +-----------------------+
// | Guard page (4 KiB) |
// | Metadata page (4 KiB) |
// | Guard pages (8 KiB) |
// | Slot span |
// | Slot span |
// | ... |
// | Slot span |
// | Guard page (4 KiB) |
// +-----------------------+
//
// - Each slot span is a contiguous range of one or more PartitionPages.
// - The metadata page has the following format. Note that the PartitionPage
// that is not at the head of a slot span is "unused". In other words,
// the metadata for the slot span is stored only in the first PartitionPage
// of the slot span. Metadata accesses to other PartitionPages are
// redirected to the first PartitionPage.
// Each slot span is a contiguous range of one or more `PartitionPage`s.
//
// | SuperPageExtentEntry (32B) |
// | PartitionPage of slot span 1 (32B, used) |
// | PartitionPage of slot span 1 (32B, unused) |
// | PartitionPage of slot span 1 (32B, unused) |
// | PartitionPage of slot span 2 (32B, used) |
// | PartitionPage of slot span 3 (32B, used) |
// | ... |
// | PartitionPage of slot span N (32B, unused) |
// The metadata page has the following format. Note that the `PartitionPage`
// that is not at the head of a slot span is "unused". In other words, the
// metadata for the slot span is stored only in the first `PartitionPage` of the
// slot span. Metadata accesses to other `PartitionPage`s are redirected to the
// first `PartitionPage`.
//
// A direct mapped page has a similar layout to fake it looking like a super
// +---------------------------------------------+
// | SuperPageExtentEntry (32 B) |
// | PartitionPage of slot span 1 (32 B, used) |
// | PartitionPage of slot span 1 (32 B, unused) |
// | PartitionPage of slot span 1 (32 B, unused) |
// | PartitionPage of slot span 2 (32 B, used) |
// | PartitionPage of slot span 3 (32 B, used) |
// | ... |
// | PartitionPage of slot span N (32 B, unused) |
// +---------------------------------------------+
//
// A direct-mapped page has a similar layout to fake it looking like a super
// page:
//
// | Guard page (4KB) |
// | Metadata page (4KB) |
// | Guard pages (8KB) |
// | Direct mapped object |
// | Guard page (4KB) |
// +-----------------------+
// | Guard page (4 KiB) |
// | Metadata page (4 KiB) |
// | Guard pages (8 KiB) |
// | Direct mapped object |
// | Guard page (4 KiB) |
// +-----------------------+
//
// - The metadata page has the following layout:
// A direct-mapped page's metadata page has the following layout:
//
// | SuperPageExtentEntry (32B) |
// | PartitionPage (32B) |
// | PartitionBucket (32B) |
// | PartitionDirectMapExtent (8B) |
static const size_t kSuperPageShift = 21; // 2MB
// +--------------------------------+
// | SuperPageExtentEntry (32 B) |
// | PartitionPage (32 B) |
// | PartitionBucket (32 B) |
// | PartitionDirectMapExtent (8 B) |
// +--------------------------------+
static const size_t kSuperPageShift = 21; // 2 MiB
static const size_t kSuperPageSize = 1 << kSuperPageShift;
static const size_t kSuperPageOffsetMask = kSuperPageSize - 1;
static const size_t kSuperPageBaseMask = ~kSuperPageOffsetMask;
......@@ -108,15 +124,17 @@ static const size_t kNumPartitionPagesPerSuperPage =
kSuperPageSize / kPartitionPageSize;
// The following kGeneric* constants apply to the generic variants of the API.
// The "order" of an allocation is closely related to the power-of-two size of
// the allocation. More precisely, the order is the bit index of the
// most-significant-bit in the allocation size, where the bit numbers starts
// at index 1 for the least-significant-bit.
// The "order" of an allocation is closely related to the power-of-1 size of the
// allocation. More precisely, the order is the bit index of the
// most-significant-bit in the allocation size, where the bit numbers starts at
// index 1 for the least-significant-bit.
//
// In terms of allocation sizes, order 0 covers 0, order 1 covers 1, order 2
// covers 2->3, order 3 covers 4->7, order 4 covers 8->15.
static const size_t kGenericMinBucketedOrder = 4; // 8 bytes.
static const size_t kGenericMaxBucketedOrder =
20; // Largest bucketed order is 1<<(20-1) (storing 512KB -> almost 1MB)
// The largest bucketed order is 1 << (20 - 1), storing [512 KiB, 1 MiB):
static const size_t kGenericMaxBucketedOrder = 20;
static const size_t kGenericNumBucketedOrders =
(kGenericMaxBucketedOrder - kGenericMinBucketedOrder) + 1;
// Eight buckets per order (for the higher orders), e.g. order 8 is 128, 144,
......@@ -133,28 +151,27 @@ static const size_t kGenericMaxBucketSpacing =
static const size_t kGenericMaxBucketed =
(1 << (kGenericMaxBucketedOrder - 1)) +
((kGenericNumBucketsPerOrder - 1) * kGenericMaxBucketSpacing);
static const size_t kGenericMinDirectMappedDownsize =
kGenericMaxBucketed +
1; // Limit when downsizing a direct mapping using realloc().
// Limit when downsizing a direct mapping using `realloc`:
static const size_t kGenericMinDirectMappedDownsize = kGenericMaxBucketed + 1;
static const size_t kGenericMaxDirectMapped =
(1UL << 31) + kPageAllocationGranularity; // 2 GB plus one more page.
(1UL << 31) + kPageAllocationGranularity; // 2 GiB plus 1 more page.
static const size_t kBitsPerSizeT = sizeof(void*) * CHAR_BIT;
// Constant for the memory reclaim logic.
static const size_t kMaxFreeableSpans = 16;
// If the total size in bytes of allocated but not committed pages exceeds this
// value (probably it is a "out of virtual address space" crash),
// a special crash stack trace is generated at |PartitionOutOfMemory|.
// This is to distinguish "out of virtual address space" from
// "out of physical memory" in crash reports.
static const size_t kReasonableSizeOfUnusedPages = 1024 * 1024 * 1024; // 1GB
// value (probably it is a "out of virtual address space" crash), a special
// crash stack trace is generated at
// `PartitionOutOfMemoryWithLotsOfUncommitedPages`. This is to distinguish "out
// of virtual address space" from "out of physical memory" in crash reports.
static const size_t kReasonableSizeOfUnusedPages = 1024 * 1024 * 1024; // 1 GiB
// These two byte values match tcmalloc.
// These byte values match tcmalloc.
static const unsigned char kUninitializedByte = 0xAB;
static const unsigned char kFreedByte = 0xCD;
// Flags for PartitionAllocGenericFlags.
// Flags for `PartitionAllocGenericFlags`.
enum PartitionAllocFlags {
PartitionAllocReturnNull = 1 << 0,
PartitionAllocZeroFill = 1 << 1,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment