Commit c37cc3ed authored by dcheng@chromium.org's avatar dcheng@chromium.org

Revert 194649 "Remove scoped_array from Chromium."

> Remove scoped_array from Chromium.
> 
> C++11 provides unique_ptr<T[]>, and Chromium has implemented
> scoped_ptr<T[]> to match its behavior during the transition period. As a
> result, scoped_array<T> is now redundant and is being removed.
> 
> BUG=171111
> 
> Review URL: https://codereview.chromium.org/14081006

TBR=dcheng@chromium.org

Review URL: https://codereview.chromium.org/14225009

git-svn-id: svn://svn.chromium.org/chrome/trunk/src@194653 0039d316-1c4b-4281-b951-d872f2087c98
parent 17160581
...@@ -136,6 +136,12 @@ struct CallbackParamTraits<scoped_ptr<T, D> > { ...@@ -136,6 +136,12 @@ struct CallbackParamTraits<scoped_ptr<T, D> > {
typedef scoped_ptr<T, D> StorageType; typedef scoped_ptr<T, D> StorageType;
}; };
template <typename T>
struct CallbackParamTraits<scoped_array<T> > {
typedef scoped_array<T> ForwardType;
typedef scoped_array<T> StorageType;
};
template <typename T, typename R> template <typename T, typename R>
struct CallbackParamTraits<scoped_ptr_malloc<T, R> > { struct CallbackParamTraits<scoped_ptr_malloc<T, R> > {
typedef scoped_ptr_malloc<T, R> ForwardType; typedef scoped_ptr_malloc<T, R> ForwardType;
...@@ -170,6 +176,9 @@ T& CallbackForward(T& t) { return t; } ...@@ -170,6 +176,9 @@ T& CallbackForward(T& t) { return t; }
template <typename T, typename D> template <typename T, typename D>
scoped_ptr<T, D> CallbackForward(scoped_ptr<T, D>& p) { return p.Pass(); } scoped_ptr<T, D> CallbackForward(scoped_ptr<T, D>& p) { return p.Pass(); }
template <typename T>
scoped_array<T> CallbackForward(scoped_array<T>& p) { return p.Pass(); }
template <typename T, typename R> template <typename T, typename R>
scoped_ptr_malloc<T, R> CallbackForward(scoped_ptr_malloc<T, R>& p) { scoped_ptr_malloc<T, R> CallbackForward(scoped_ptr_malloc<T, R>& p) {
return p.Pass(); return p.Pass();
......
...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
// end of a scope. There are two main classes you will use, which correspond // end of a scope. There are two main classes you will use, which correspond
// to the operators new/delete and new[]/delete[]. // to the operators new/delete and new[]/delete[].
// //
// Example usage (scoped_ptr<T>): // Example usage (scoped_ptr):
// { // {
// scoped_ptr<Foo> foo(new Foo("wee")); // scoped_ptr<Foo> foo(new Foo("wee"));
// } // foo goes out of scope, releasing the pointer with it. // } // foo goes out of scope, releasing the pointer with it.
...@@ -26,9 +26,9 @@ ...@@ -26,9 +26,9 @@
// // manages a pointer. // // manages a pointer.
// } // foo wasn't managing a pointer, so nothing was destroyed. // } // foo wasn't managing a pointer, so nothing was destroyed.
// //
// Example usage (scoped_ptr<T[]>): // Example usage (scoped_array):
// { // {
// scoped_ptr<Foo[]> foo(new Foo[100]); // scoped_array<Foo> foo(new Foo[100]);
// foo.get()->Method(); // Foo::Method on the 0th element. // foo.get()->Method(); // Foo::Method on the 0th element.
// foo[10].Method(); // Foo::Method on the 10th element. // foo[10].Method(); // Foo::Method on the 10th element.
// } // }
...@@ -81,14 +81,15 @@ ...@@ -81,14 +81,15 @@
// return result.PassAs<Foo>(); // return result.PassAs<Foo>();
// } // }
// //
// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for // Note that PassAs<>() is implemented only for scoped_ptr, but not for
// scoped_ptr<T[]>. This is because casting array pointers may not be safe. // scoped_array. This is because casting array pointers may not be safe.
#ifndef BASE_MEMORY_SCOPED_PTR_H_ #ifndef BASE_MEMORY_SCOPED_PTR_H_
#define BASE_MEMORY_SCOPED_PTR_H_ #define BASE_MEMORY_SCOPED_PTR_H_
// This is an implementation designed to match the anticipated future TR2 // This is an implementation designed to match the anticipated future TR2
// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated). // implementation of the scoped_ptr class, and its closely-related brethren,
// scoped_array, scoped_ptr_malloc.
#include <assert.h> #include <assert.h>
#include <stddef.h> #include <stddef.h>
...@@ -562,6 +563,141 @@ bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { ...@@ -562,6 +563,141 @@ bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
return p1 != p2.get(); return p1 != p2.get();
} }
// DEPRECATED: Use scoped_ptr<C[]> instead.
//
// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
// with new [] and the destructor deletes objects with delete [].
//
// As with scoped_ptr<C>, a scoped_array<C> either points to an object
// or is NULL. A scoped_array<C> owns the object that it points to.
// scoped_array<T> is thread-compatible, and once you index into it,
// the returned objects have only the thread safety guarantees of T.
//
// Size: sizeof(scoped_array<C>) == sizeof(C*)
template <class C>
class scoped_array {
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_array, RValue)
public:
// The element type
typedef C element_type;
// Constructor. Defaults to initializing with NULL.
// There is no way to create an uninitialized scoped_array.
// The input parameter must be allocated with new [].
explicit scoped_array(C* p = NULL) : array_(p) { }
// Constructor. Move constructor for C++03 move emulation of this type.
scoped_array(RValue rvalue)
: array_(rvalue.object->release()) {
}
// Destructor. If there is a C object, delete it.
// We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array() {
enum { type_must_be_complete = sizeof(C) };
delete[] array_;
}
// operator=. Move operator= for C++03 move emulation of this type.
scoped_array& operator=(RValue rhs) {
reset(rhs.object->release());
return *this;
}
// Reset. Deletes the current owned object, if any.
void reset(C* p = NULL) {
// This is a self-reset, which is no longer allowed: http://crbug.com/162971
if (p != NULL && p == array_)
abort();
C* old = array_;
array_ = NULL;
if (old != NULL)
delete[] old;
array_ = p;
}
// Get one element of the current object.
// Will assert() if there is no current object, or index i is negative.
C& operator[](ptrdiff_t i) const {
assert(i >= 0);
assert(array_ != NULL);
return array_[i];
}
// Get a pointer to the zeroth element of the current object.
// If there is no current object, return NULL.
C* get() const {
return array_;
}
// Allow scoped_array<C> to be used in boolean expressions, but not
// implicitly convertible to a real bool (which is dangerous).
typedef C* scoped_array::*Testable;
operator Testable() const { return array_ ? &scoped_array::array_ : NULL; }
// Comparison operators.
// These return whether two scoped_array refer to the same object, not just to
// two different but equal objects.
bool operator==(C* p) const { return array_ == p; }
bool operator!=(C* p) const { return array_ != p; }
// Swap two scoped arrays.
void swap(scoped_array& p2) {
C* tmp = array_;
array_ = p2.array_;
p2.array_ = tmp;
}
// Release an array.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() WARN_UNUSED_RESULT {
C* retVal = array_;
array_ = NULL;
return retVal;
}
private:
C* array_;
// Disable initialization from any type other than C*, by providing a
// constructor that matches such an initialization, but is private and has no
// definition. This is disabled because it is not safe to call delete[] on an
// array whose static type does not match its dynamic type.
template <typename C2> explicit scoped_array(C2* array);
explicit scoped_array(int disallow_construction_from_null);
// Disable reset() from any type other than C*, for the same reasons as the
// constructor above.
template <typename C2> void reset(C2* array);
void reset(int disallow_reset_from_null);
// Forbid comparison of different scoped_array types.
template <class C2> bool operator==(scoped_array<C2> const& p2) const;
template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
};
// Free functions
template <class C>
void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
p1.swap(p2);
}
template <class C>
bool operator==(C* p1, const scoped_array<C>& p2) {
return p1 == p2.get();
}
template <class C>
bool operator!=(C* p1, const scoped_array<C>& p2) {
return p1 != p2.get();
}
// DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead. // DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead.
// //
// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
......
...@@ -378,6 +378,82 @@ TEST(ScopedPtrTest, ScopedPtrWithArray) { ...@@ -378,6 +378,82 @@ TEST(ScopedPtrTest, ScopedPtrWithArray) {
EXPECT_EQ(0, constructed); EXPECT_EQ(0, constructed);
} }
TEST(ScopedPtrTest, ScopedArray) {
static const int kNumLoggers = 12;
int constructed = 0;
{
scoped_array<ConDecLogger> scoper(new ConDecLogger[kNumLoggers]);
EXPECT_TRUE(scoper.get());
EXPECT_EQ(&scoper[0], scoper.get());
for (int i = 0; i < kNumLoggers; ++i) {
scoper[i].SetPtr(&constructed);
}
EXPECT_EQ(12, constructed);
EXPECT_EQ(10, scoper.get()->SomeMeth(10));
EXPECT_EQ(10, scoper[2].SomeMeth(10));
}
EXPECT_EQ(0, constructed);
// Test reset() and release()
{
scoped_array<ConDecLogger> scoper;
EXPECT_FALSE(scoper.get());
EXPECT_FALSE(scoper.release());
EXPECT_FALSE(scoper.get());
scoper.reset();
EXPECT_FALSE(scoper.get());
scoper.reset(new ConDecLogger[kNumLoggers]);
for (int i = 0; i < kNumLoggers; ++i) {
scoper[i].SetPtr(&constructed);
}
EXPECT_EQ(12, constructed);
scoper.reset();
EXPECT_EQ(0, constructed);
scoper.reset(new ConDecLogger[kNumLoggers]);
for (int i = 0; i < kNumLoggers; ++i) {
scoper[i].SetPtr(&constructed);
}
EXPECT_EQ(12, constructed);
ConDecLogger* ptr = scoper.release();
EXPECT_EQ(12, constructed);
delete[] ptr;
EXPECT_EQ(0, constructed);
}
EXPECT_EQ(0, constructed);
// Test swap(), ==, !=, and type-safe Boolean.
{
scoped_array<ConDecLogger> scoper1;
scoped_array<ConDecLogger> scoper2;
EXPECT_TRUE(scoper1 == scoper2.get());
EXPECT_FALSE(scoper1 != scoper2.get());
ConDecLogger* loggers = new ConDecLogger[kNumLoggers];
for (int i = 0; i < kNumLoggers; ++i) {
loggers[i].SetPtr(&constructed);
}
scoper1.reset(loggers);
EXPECT_TRUE(scoper1);
EXPECT_EQ(loggers, scoper1.get());
EXPECT_FALSE(scoper2);
EXPECT_FALSE(scoper2.get());
EXPECT_FALSE(scoper1 == scoper2.get());
EXPECT_TRUE(scoper1 != scoper2.get());
scoper2.swap(scoper1);
EXPECT_EQ(loggers, scoper2.get());
EXPECT_FALSE(scoper1.get());
EXPECT_FALSE(scoper1 == scoper2.get());
EXPECT_TRUE(scoper1 != scoper2.get());
}
EXPECT_EQ(0, constructed);
}
TEST(ScopedPtrTest, PassBehavior) { TEST(ScopedPtrTest, PassBehavior) {
int constructed = 0; int constructed = 0;
{ {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment