Commit 1efc51c6 authored by xians@chromium.org's avatar xians@chromium.org

Adding input and output delay estimation for mac.

Review URL: http://codereview.chromium.org/8234009

git-svn-id: svn://svn.chromium.org/chrome/trunk/src@107642 0039d316-1c4b-4281-b951-d872f2087c98
parent a6c3e9ea
......@@ -33,7 +33,9 @@ AUAudioInputStream::AUAudioInputStream(
: manager_(manager),
sink_(NULL),
audio_unit_(0),
started_(false) {
input_device_id_(kAudioObjectUnknown),
started_(false),
hardware_latency_frames_(0) {
DCHECK(manager_);
// Set up the desired (output) format specified by the client.
......@@ -137,25 +139,34 @@ bool AUAudioInputStream::Open() {
// Set the current device of the AudioOuputUnit to default input device.
AudioDeviceID input_device;
UInt32 size = sizeof(input_device);
// First, obtain the current input device selected by the user.
result = AudioHardwareGetProperty(kAudioHardwarePropertyDefaultInputDevice,
&size,
&input_device);
AudioObjectPropertyAddress default_intput_device_address = {
kAudioHardwarePropertyDefaultInputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
AudioDeviceID input_device = kAudioObjectUnknown;
UInt32 size = sizeof(input_device);
result = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&default_intput_device_address,
0,
0,
&size,
&input_device);
if (result) {
HandleError(result);
return false;
}
input_device_id_ = input_device;
// Next, set the audio device to be the Audio Unit's current device.
// Note that, devices can only be set to the AUHAL after enabling IO.
result = AudioUnitSetProperty(audio_unit_,
kAudioOutputUnitProperty_CurrentDevice,
kAudioUnitScope_Global,
0,
&input_device,
&input_device_id_,
sizeof(input_device));
if (result) {
HandleError(result);
......@@ -213,6 +224,10 @@ bool AUAudioInputStream::Open() {
HandleError(result);
return false;
}
// The hardware latency is fixed and will not change during the call.
hardware_latency_frames_ = GetHardwareLatency();
return true;
}
......@@ -290,26 +305,32 @@ OSStatus AUAudioInputStream::InputProc(void* user_data,
// Deliver recorded data to the consumer as a callback.
return audio_input->Provide(number_of_frames,
audio_input->audio_buffer_list());
audio_input->audio_buffer_list(),
time_stamp);
}
OSStatus AUAudioInputStream::Provide(UInt32 number_of_frames,
AudioBufferList* io_data) {
AudioBufferList* io_data,
const AudioTimeStamp* time_stamp) {
// Update the capture latency.
double capture_latency_frames = GetCaptureLatency(time_stamp);
AudioBuffer& buffer = io_data->mBuffers[0];
uint8* audio_data = reinterpret_cast<uint8*>(buffer.mData);
uint32 capture_delay_bytes = static_cast<uint32>
((capture_latency_frames + 0.5) * format_.mBytesPerFrame);
DCHECK(audio_data);
if (!audio_data)
return kAudioUnitErr_InvalidElement;
// TODO(henrika): improve delay estimation. Using buffer size for now.
sink_->OnData(this, audio_data, buffer.mDataByteSize, buffer.mDataByteSize);
sink_->OnData(this, audio_data, buffer.mDataByteSize, capture_delay_bytes);
return noErr;
}
double AUAudioInputStream::HardwareSampleRate() {
// Determine the default input device's sample-rate.
AudioDeviceID device_id = kAudioDeviceUnknown;
AudioDeviceID device_id = kAudioObjectUnknown;
UInt32 info_size = sizeof(device_id);
AudioObjectPropertyAddress default_input_device_address = {
......@@ -348,6 +369,89 @@ double AUAudioInputStream::HardwareSampleRate() {
return nominal_sample_rate;
}
double AUAudioInputStream::GetHardwareLatency() {
if (!audio_unit_ || input_device_id_ == kAudioObjectUnknown) {
DLOG(WARNING) << "Audio unit object is NULL or device ID is unknown";
return 0.0;
}
// Get audio unit latency.
Float64 audio_unit_latency_sec = 0.0;
UInt32 size = sizeof(audio_unit_latency_sec);
OSStatus result = AudioUnitGetProperty(audio_unit_,
kAudioUnitProperty_Latency,
kAudioUnitScope_Global,
0,
&audio_unit_latency_sec,
&size);
DLOG_IF(WARNING, result != noErr) << "Could not get audio unit latency.";
// Get input audio device latency.
AudioObjectPropertyAddress property_address = {
kAudioDevicePropertyLatency,
kAudioDevicePropertyScopeInput,
kAudioObjectPropertyElementMaster
};
UInt32 device_latency_frames = 0;
size = sizeof(device_latency_frames);
result = AudioObjectGetPropertyData(input_device_id_,
&property_address,
0,
NULL,
&size,
&device_latency_frames);
DLOG_IF(WARNING, result != noErr) << "Could not get audio device latency.";
// Get the stream latency.
property_address.mSelector = kAudioDevicePropertyStreams;
UInt32 stream_latency_frames = 0;
size = 0;
result = AudioObjectGetPropertyDataSize(input_device_id_,
&property_address,
0,
NULL,
&size);
if (!result) {
scoped_ptr_malloc<AudioStreamID>
streams(reinterpret_cast<AudioStreamID*>(malloc(size)));
AudioStreamID* stream_ids = streams.get();
result = AudioObjectGetPropertyData(input_device_id_,
&property_address,
0,
NULL,
&size,
stream_ids);
if (!result) {
property_address.mSelector = kAudioStreamPropertyLatency;
result = AudioObjectGetPropertyData(stream_ids[0],
&property_address,
0,
NULL,
&size,
&stream_latency_frames);
}
}
DLOG_IF(WARNING, result != noErr) << "Could not get audio stream latency.";
return static_cast<double>((audio_unit_latency_sec *
format_.mSampleRate) + device_latency_frames + stream_latency_frames);
}
double AUAudioInputStream::GetCaptureLatency(
const AudioTimeStamp* input_time_stamp) {
// Get the delay between between the actual recording instant and the time
// when the data packet is provided as a callback.
UInt64 capture_time_ns = AudioConvertHostTimeToNanos(
input_time_stamp->mHostTime);
UInt64 now_ns = AudioConvertHostTimeToNanos(AudioGetCurrentHostTime());
double delay_frames = static_cast<double>
(1e-9 * (now_ns - capture_time_ns) * format_.mSampleRate);
// Total latency is composed by the dynamic latency and the fixed
// hardware latency.
return (delay_frames + hardware_latency_frames_);
}
void AUAudioInputStream::HandleError(OSStatus err) {
NOTREACHED() << "error code: " << err;
if (sink_)
......
......@@ -27,6 +27,11 @@
// input device and then use the same rate when creating this object.
// Use AUAudioInputStream::HardwareSampleRate() to retrieve the sample rate.
// - Calling Close() also leads to self destruction.
// - The latency consists of two parts:
// 1) Hardware latency, which includes Audio Unit latency, audio device
// latency and audio stream latency;
// 2) The delay between the actual recording instant and the time when the
// data packet is provided as a callback.
//
#ifndef MEDIA_AUDIO_MAC_AUDIO_LOW_LATENCY_INPUT_MAC_H_
#define MEDIA_AUDIO_MAC_AUDIO_LOW_LATENCY_INPUT_MAC_H_
......@@ -73,7 +78,15 @@ class AUAudioInputStream : public AudioInputStream {
AudioBufferList* io_data);
// Pushes recorded data to consumer of the input audio stream.
OSStatus Provide(UInt32 number_of_frames, AudioBufferList* io_data);
OSStatus Provide(UInt32 number_of_frames, AudioBufferList* io_data,
const AudioTimeStamp* time_stamp);
// Gets the fixed capture hardware latency and store it during initialization.
// Returns 0 if not available.
double GetHardwareLatency();
// Gets the current capture delay value.
double GetCaptureLatency(const AudioTimeStamp* input_time_stamp);
// Issues the OnError() callback to the |sink_|.
void HandleError(OSStatus err);
......@@ -96,6 +109,9 @@ class AUAudioInputStream : public AudioInputStream {
// The AUHAL also enables selection of non default devices.
AudioUnit audio_unit_;
// The UID refers to the current input audio device.
AudioDeviceID input_device_id_;
// Provides a mechanism for encapsulating one or more buffers of audio data.
AudioBufferList audio_buffer_list_;
......@@ -106,6 +122,9 @@ class AUAudioInputStream : public AudioInputStream {
// True after successfull Start(), false after successful Stop().
bool started_;
// Fixed capture hardware latency in frames.
double hardware_latency_frames_;
DISALLOW_COPY_AND_ASSIGN(AUAudioInputStream);
};
......
......@@ -13,8 +13,10 @@
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Between;
using ::testing::Ge;
using ::testing::NotNull;
class MockAudioInputCallback : public AudioInputStream::AudioInputCallback {
......@@ -215,7 +217,8 @@ TEST(MacAudioInputTest, AUAudioInputStreamVerifyMonoRecording) {
// startup sequence takes some time, it is reasonable to expect 5-10
// callbacks in this time period. All should contain valid packets of
// the same size.
EXPECT_CALL(sink, OnData(ais, NotNull(), bytes_per_packet, bytes_per_packet))
EXPECT_CALL(sink, OnData(ais, NotNull(), bytes_per_packet,
Ge(bytes_per_packet)))
.Times(Between(5, 10));
ais->Start(&sink);
......@@ -248,7 +251,8 @@ TEST(MacAudioInputTest, AUAudioInputStreamVerifyStereoRecording) {
// startup sequence takes some time, it is reasonable to expect 5-10
// callbacks in this time period. All should contain valid packets of
// the same size.
EXPECT_CALL(sink, OnData(ais, NotNull(), bytes_per_packet, bytes_per_packet))
EXPECT_CALL(sink, OnData(ais, NotNull(), bytes_per_packet,
Ge(bytes_per_packet)))
.Times(Between(5, 10));
ais->Start(&sink);
......
......@@ -47,7 +47,9 @@ AUAudioOutputStream::AUAudioOutputStream(
: manager_(manager),
source_(NULL),
output_unit_(0),
volume_(1) {
output_device_id_(kAudioObjectUnknown),
volume_(1),
hardware_latency_frames_(0) {
// We must have a manager.
DCHECK(manager_);
// A frame is one sample across all channels. In interleaved audio the per
......@@ -72,6 +74,23 @@ AUAudioOutputStream::~AUAudioOutputStream() {
}
bool AUAudioOutputStream::Open() {
// Obtain the current input device selected by the user.
UInt32 size = sizeof(output_device_id_);
AudioObjectPropertyAddress default_output_device_address = {
kAudioHardwarePropertyDefaultOutputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
OSStatus result = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&default_output_device_address,
0,
0,
&size,
&output_device_id_);
DCHECK_EQ(result, 0);
if (result)
return false;
// Open and initialize the DefaultOutputUnit.
Component comp;
ComponentDescription desc;
......@@ -84,7 +103,7 @@ bool AUAudioOutputStream::Open() {
comp = FindNextComponent(0, &desc);
DCHECK(comp);
OSStatus result = OpenAComponent(comp, &output_unit_);
result = OpenAComponent(comp, &output_unit_);
DCHECK_EQ(result, 0);
if (result)
return false;
......@@ -95,6 +114,8 @@ bool AUAudioOutputStream::Open() {
if (result)
return false;
hardware_latency_frames_ = GetHardwareLatency();
return Configure();
}
......@@ -185,11 +206,18 @@ void AUAudioOutputStream::GetVolume(double* volume) {
// Note to future hackers of this function: Do not add locks here because this
// is running on a real-time thread (for low-latency).
OSStatus AUAudioOutputStream::Render(UInt32 number_of_frames,
AudioBufferList* io_data) {
AudioBufferList* io_data,
const AudioTimeStamp* output_time_stamp) {
// Update the playout latency.
double playout_latency_frames = GetPlayoutLatency(output_time_stamp);
AudioBuffer& buffer = io_data->mBuffers[0];
uint8* audio_data = reinterpret_cast<uint8*>(buffer.mData);
uint32 hardware_pending_bytes = static_cast<uint32>
((playout_latency_frames + 0.5) * format_.mBytesPerFrame);
uint32 filled = source_->OnMoreData(
this, audio_data, buffer.mDataByteSize, AudioBuffersState(0, 0));
this, audio_data, buffer.mDataByteSize,
AudioBuffersState(0, hardware_pending_bytes));
// Handle channel order for 5.1 audio.
if (format_.mChannelsPerFrame == 6) {
......@@ -208,7 +236,7 @@ OSStatus AUAudioOutputStream::Render(UInt32 number_of_frames,
// DefaultOutputUnit callback
OSStatus AUAudioOutputStream::InputProc(void* user_data,
AudioUnitRenderActionFlags*,
const AudioTimeStamp*,
const AudioTimeStamp* output_time_stamp,
UInt32,
UInt32 number_of_frames,
AudioBufferList* io_data) {
......@@ -218,12 +246,12 @@ OSStatus AUAudioOutputStream::InputProc(void* user_data,
if (!audio_output)
return -1;
return audio_output->Render(number_of_frames, io_data);
return audio_output->Render(number_of_frames, io_data, output_time_stamp);
}
double AUAudioOutputStream::HardwareSampleRate() {
// Determine the default output device's sample-rate.
AudioDeviceID device_id = kAudioDeviceUnknown;
AudioDeviceID device_id = kAudioObjectUnknown;
UInt32 info_size = sizeof(device_id);
AudioObjectPropertyAddress default_output_device_address = {
......@@ -261,3 +289,83 @@ double AUAudioOutputStream::HardwareSampleRate() {
return nominal_sample_rate;
}
double AUAudioOutputStream::GetHardwareLatency() {
if (!output_unit_ || output_device_id_ == kAudioObjectUnknown) {
DLOG(WARNING) << "Audio unit object is NULL or device ID is unknown";
return 0.0;
}
// Get audio unit latency.
Float64 audio_unit_latency_sec = 0.0;
UInt32 size = sizeof(audio_unit_latency_sec);
OSStatus result = AudioUnitGetProperty(output_unit_,
kAudioUnitProperty_Latency,
kAudioUnitScope_Global,
0,
&audio_unit_latency_sec,
&size);
DLOG_IF(WARNING, result != noErr) << "Could not get audio unit latency.";
// Get output audio device latency.
AudioObjectPropertyAddress property_address = {
kAudioDevicePropertyLatency,
kAudioDevicePropertyScopeOutput,
kAudioObjectPropertyElementMaster
};
UInt32 device_latency_frames = 0;
size = sizeof(device_latency_frames);
result = AudioObjectGetPropertyData(output_device_id_,
&property_address,
0,
NULL,
&size,
&device_latency_frames);
DLOG_IF(WARNING, result != noErr) << "Could not get audio device latency.";
// Get the stream latency.
property_address.mSelector = kAudioDevicePropertyStreams;
UInt32 stream_latency_frames = 0;
result = AudioObjectGetPropertyDataSize(output_device_id_,
&property_address,
0,
NULL,
&size);
if (!result) {
scoped_ptr_malloc<AudioStreamID>
streams(reinterpret_cast<AudioStreamID*>(malloc(size)));
AudioStreamID* stream_ids = streams.get();
result = AudioObjectGetPropertyData(output_device_id_,
&property_address,
0,
NULL,
&size,
stream_ids);
if (!result) {
property_address.mSelector = kAudioStreamPropertyLatency;
result = AudioObjectGetPropertyData(stream_ids[0],
&property_address,
0,
NULL,
&size,
&stream_latency_frames);
}
}
DLOG_IF(WARNING, result != noErr) << "Could not get audio stream latency.";
return static_cast<double>((audio_unit_latency_sec *
format_.mSampleRate) + device_latency_frames + stream_latency_frames);
}
double AUAudioOutputStream::GetPlayoutLatency(
const AudioTimeStamp* output_time_stamp) {
// Get the delay between the moment getting the callback and the scheduled
// time stamp that tells when the data is going to be played out.
UInt64 output_time_ns = AudioConvertHostTimeToNanos(
output_time_stamp->mHostTime);
UInt64 now_ns = AudioConvertHostTimeToNanos(AudioGetCurrentHostTime());
double delay_frames = static_cast<double>
(1e-9 * (output_time_ns - now_ns) * format_.mSampleRate);
return (delay_frames + hardware_latency_frames_);
}
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Implementation notes:
//
// - It is recommended to first acquire the native sample rate of the default
// output device and then use the same rate when creating this object.
// Use AUAudioOutputStream::HardwareSampleRate() to retrieve the sample rate.
// - Calling Close() also leads to self destruction.
// - The latency consists of two parts:
// 1) Hardware latency, which includes Audio Unit latency, audio device
// latency and audio stream latency;
// 2) The delay between the moment getting the callback and the scheduled time
// stamp that tells when the data is going to be played out.
//
#ifndef MEDIA_AUDIO_MAC_AUDIO_LOW_LATENCY_OUTPUT_MAC_H_
#define MEDIA_AUDIO_MAC_AUDIO_LOW_LATENCY_OUTPUT_MAC_H_
#include <AudioUnit/AudioUnit.h>
#include "base/memory/scoped_ptr.h"
#include "media/audio/audio_io.h"
#include "media/audio/audio_parameters.h"
......@@ -44,11 +57,19 @@ class AUAudioOutputStream : public AudioOutputStream {
UInt32 number_of_frames,
AudioBufferList* io_data);
OSStatus Render(UInt32 number_of_frames, AudioBufferList* io_data);
OSStatus Render(UInt32 number_of_frames, AudioBufferList* io_data,
const AudioTimeStamp* output_time_stamp);
// Sets up the stream format for the default output Audio Unit.
bool Configure();
// Gets the fixed playout device hardware latency and stores it. Returns 0
// if not available.
double GetHardwareLatency();
// Gets the current playout latency value.
double GetPlayoutLatency(const AudioTimeStamp* output_time_stamp);
// Our creator, the audio manager needs to be notified when we close.
AudioManagerMac* manager_;
......@@ -63,9 +84,15 @@ class AUAudioOutputStream : public AudioOutputStream {
// The default output Audio Unit which talks to the audio hardware.
AudioUnit output_unit_;
// The UID refers to the current output audio device.
AudioDeviceID output_device_id_;
// Volume level from 0 to 1.
float volume_;
// Fixed playout hardware latency in frames.
double hardware_latency_frames_;
DISALLOW_COPY_AND_ASSIGN(AUAudioOutputStream);
};
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment