Commit 445fcc90 authored by Reilly Grant's avatar Reilly Grant Committed by Commit Bot

Revert "Stop building SkCodec"

This reverts commit fd493b4b.

Reason for revert: Broken build: https://build.chromium.org/p/chromium.webkit/builders/WebKit%20Win%20x64%20Builder%20%28dbg%29/builds/114259

Original change's description:
> Stop building SkCodec
> 
> Bug: 768878
> 
> Building SkCodec seems to have caused a paint regression on a webpage
> without any images. This leads us to suspect "some minor compiler
> optimization tickling". Stop building it to confirm. Two CLs rely on
> SkCodec:
> 
> "Use SkCodec internally in GIFImageDecoder"
> 4fed3346. This introduced building
> SkCodec.
> 
> "Enable Skia's SkImageGenerator implementation"
> f5eb27c2. This used SkCodec to fix
> crbug.com/758459, but that seems to have been fixed in another way.
> 
> In addition, this corrects some formatting in the old code (as
> commanded by presubmit), and makes some other minor changes (no more
> PassRefPtr, FrameDurationAtIndex now returns a TimeDelta).
> 
> Change-Id: Ic2bdd87740da0232c9c07e27eed6049efc26d76c
> Reviewed-on: https://chromium-review.googlesource.com/718918
> Commit-Queue: Leon Scroggins <scroggo@chromium.org>
> Reviewed-by: Chris Blume <cblume@chromium.org>
> Reviewed-by: Fredrik Söderquist <fs@opera.com>
> Reviewed-by: Leon Scroggins <scroggo@chromium.org>
> Reviewed-by: Philip Rogers <pdr@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#509570}

TBR=scroggo@chromium.org,pdr@chromium.org,fs@opera.com,cblume@chromium.org

Change-Id: Ib4c5be2e885f483d881ca65689cb5e9f3dc755df
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: 768878
Reviewed-on: https://chromium-review.googlesource.com/724359Reviewed-by: default avatarReilly Grant <reillyg@chromium.org>
Commit-Queue: Reilly Grant <reillyg@chromium.org>
Cr-Commit-Position: refs/heads/master@{#509577}
parent d36ebac4
......@@ -45,6 +45,10 @@ config("skia_config") {
"//third_party/skia/third_party/vulkan",
]
if (!is_ios) {
include_dirs += [ "//third_party/skia/include/codec" ]
}
defines = skia_for_chromium_defines
defines += [
"SK_HAS_PNG_LIBRARY",
......@@ -282,16 +286,39 @@ component("skia") {
"//third_party/skia/src/images/SkPngEncoder.cpp",
"//third_party/skia/src/images/SkWebpEncoder.cpp",
"//third_party/skia/src/ports/SkGlobalInitialization_default.cpp",
"//third_party/skia/src/ports/SkImageGenerator_none.cpp",
"//third_party/skia/src/ports/SkOSFile_stdio.cpp",
"//third_party/skia/src/sfnt/SkOTTable_name.cpp",
"//third_party/skia/src/sfnt/SkOTUtils.cpp",
]
if (!is_ios) {
sources += [
"//third_party/skia/src/codec/SkBmpBaseCodec.cpp",
"//third_party/skia/src/codec/SkBmpCodec.cpp",
"//third_party/skia/src/codec/SkBmpMaskCodec.cpp",
"//third_party/skia/src/codec/SkBmpRLECodec.cpp",
"//third_party/skia/src/codec/SkBmpStandardCodec.cpp",
"//third_party/skia/src/codec/SkCodec.cpp",
"//third_party/skia/src/codec/SkCodecImageGenerator.cpp",
"//third_party/skia/src/codec/SkGifCodec.cpp",
"//third_party/skia/src/codec/SkIcoCodec.cpp",
"//third_party/skia/src/codec/SkJpegCodec.cpp",
"//third_party/skia/src/codec/SkJpegDecoderMgr.cpp",
"//third_party/skia/src/codec/SkJpegUtility.cpp",
"//third_party/skia/src/codec/SkMaskSwizzler.cpp",
"//third_party/skia/src/codec/SkMasks.cpp",
"//third_party/skia/src/codec/SkPngCodec.cpp",
"//third_party/skia/src/codec/SkSampler.cpp",
"//third_party/skia/src/codec/SkStreamBuffer.cpp",
"//third_party/skia/src/codec/SkSwizzler.cpp",
"//third_party/skia/src/codec/SkWbmpCodec.cpp",
"//third_party/skia/src/codec/SkWebpCodec.cpp",
"//third_party/skia/src/images/SkJPEGWriteUtility.cpp",
"//third_party/skia/src/images/SkJpegEncoder.cpp",
"//third_party/skia/src/ports/SkImageGenerator_skia.cpp",
"//third_party/skia/third_party/gif/SkGifImageReader.cpp",
]
} else {
sources += [ "//third_party/skia/src/ports/SkImageGenerator_none.cpp" ]
}
# This and skia_opts are really the same conceptual target so share headers.
......
......@@ -1178,14 +1178,14 @@ jumbo_component("platform") {
"image-decoders/ImageFrame.h",
"image-decoders/SegmentReader.cpp",
"image-decoders/SegmentReader.h",
"image-decoders/SegmentStream.cpp",
"image-decoders/SegmentStream.h",
"image-decoders/bmp/BMPImageDecoder.cpp",
"image-decoders/bmp/BMPImageDecoder.h",
"image-decoders/bmp/BMPImageReader.cpp",
"image-decoders/bmp/BMPImageReader.h",
"image-decoders/gif/GIFImageDecoder.cpp",
"image-decoders/gif/GIFImageDecoder.h",
"image-decoders/gif/GIFImageReader.cpp",
"image-decoders/gif/GIFImageReader.h",
"image-decoders/ico/ICOImageDecoder.cpp",
"image-decoders/ico/ICOImageDecoder.h",
"image-decoders/jpeg/JPEGImageDecoder.cpp",
......@@ -1859,6 +1859,7 @@ jumbo_source_set("blink_platform_unittests_sources") {
"image-decoders/ImageDecoderTest.cpp",
"image-decoders/ImageDecoderTestHelpers.cpp",
"image-decoders/ImageDecoderTestHelpers.h",
"image-decoders/SegmentStreamTest.cpp",
"image-decoders/bmp/BMPImageDecoderTest.cpp",
"image-decoders/gif/GIFImageDecoderTest.cpp",
"image-decoders/ico/ICOImageDecoderTest.cpp",
......
......@@ -253,15 +253,6 @@ class PLATFORM_EXPORT ImageDecoder {
// Callers may pass WTF::kNotFound to clear all frames.
// Note: If |frame_buffer_cache_| contains only one frame, it won't be
// cleared. Returns the number of bytes of frame data actually cleared.
//
// This is a virtual method because MockImageDecoder needs to override it in
// order to run the test ImageFrameGeneratorTest::ClearMultiFrameDecode.
//
// @TODO Let MockImageDecoder override ImageFrame::ClearFrameBuffer instead,
// so this method can be made non-virtual. It is used in the test
// ImageFrameGeneratorTest::ClearMultiFrameDecode. The test needs to
// be modified since two frames may be kept in cache, instead of
// always just one, with this ClearCacheExceptFrame implementation.
virtual size_t ClearCacheExceptFrame(size_t);
// If the image has a cursor hot-spot, stores it in the argument
......@@ -401,7 +392,9 @@ class PLATFORM_EXPORT ImageDecoder {
// |index| is smaller than |frame_buffer_cache_|.size().
virtual bool FrameStatusSufficientForSuccessors(size_t index) {
DCHECK(index < frame_buffer_cache_.size());
return frame_buffer_cache_[index].GetStatus() != ImageFrame::kFrameEmpty;
ImageFrame::Status frame_status = frame_buffer_cache_[index].GetStatus();
return frame_status == ImageFrame::kFramePartial ||
frame_status == ImageFrame::kFrameComplete;
}
private:
......
......@@ -82,8 +82,12 @@ bool ImageFrame::CopyBitmapData(const ImageFrame& other) {
has_alpha_ = other.has_alpha_;
bitmap_.reset();
SkImageInfo info = other.bitmap_.info();
return bitmap_.tryAllocPixels(info) &&
other.bitmap_.readPixels(info, bitmap_.getPixels(), bitmap_.rowBytes(),
if (!bitmap_.tryAllocPixels(info)) {
return false;
}
status_ = kFrameAllocated;
return other.bitmap_.readPixels(info, bitmap_.getPixels(), bitmap_.rowBytes(),
0, 0);
}
......@@ -98,6 +102,7 @@ bool ImageFrame::TakeBitmapDataIfWritable(ImageFrame* other) {
bitmap_.reset();
bitmap_.swap(other->bitmap_);
other->status_ = kFrameEmpty;
status_ = kFrameAllocated;
return true;
}
......@@ -111,7 +116,11 @@ bool ImageFrame::AllocatePixelData(int new_width,
new_width, new_height,
premultiply_alpha_ ? kPremul_SkAlphaType : kUnpremul_SkAlphaType,
std::move(color_space)));
return bitmap_.tryAllocPixels(allocator_);
bool allocated = bitmap_.tryAllocPixels(allocator_);
if (allocated)
status_ = kFrameAllocated;
return allocated;
}
bool ImageFrame::HasAlpha() const {
......
......@@ -46,7 +46,7 @@ class PLATFORM_EXPORT ImageFrame final {
DISALLOW_NEW_EXCEPT_PLACEMENT_NEW();
public:
enum Status { kFrameEmpty, kFramePartial, kFrameComplete };
enum Status { kFrameEmpty, kFrameAllocated, kFramePartial, kFrameComplete };
enum DisposalMethod {
// If you change the numeric values of these, make sure you audit
// all users, as some users may cast raw values to/from these
......
// Copyright (c) 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "platform/image-decoders/SegmentStream.h"
#include <utility>
#include "platform/image-decoders/SegmentReader.h"
namespace blink {
SegmentStream::SegmentStream() = default;
SegmentStream::SegmentStream(SegmentStream&& rhs)
: reader_(std::move(rhs.reader_)), position_(rhs.position_) {}
SegmentStream& SegmentStream::operator=(SegmentStream&& rhs) {
reader_ = std::move(rhs.reader_);
position_ = rhs.position_;
return *this;
}
SegmentStream::~SegmentStream() = default;
void SegmentStream::SetReader(WTF::RefPtr<SegmentReader> reader) {
reader_ = std::move(reader);
}
bool SegmentStream::IsCleared() const {
return !reader_ || position_ > reader_->size();
}
size_t SegmentStream::read(void* buffer, size_t size) {
DCHECK(!IsCleared());
size = std::min(size, reader_->size() - position_);
size_t bytes_advanced = 0;
if (!buffer) { // skipping, not reading
bytes_advanced = size;
} else {
bytes_advanced = peek(buffer, size);
}
position_ += bytes_advanced;
return bytes_advanced;
}
size_t SegmentStream::peek(void* buffer, size_t size) const {
DCHECK(!IsCleared());
size = std::min(size, reader_->size() - position_);
size_t total_bytes_peeked = 0;
char* buffer_as_char_ptr = reinterpret_cast<char*>(buffer);
while (size) {
const char* segment = nullptr;
size_t bytes_peeked =
reader_->GetSomeData(segment, position_ + total_bytes_peeked);
if (!bytes_peeked)
break;
if (bytes_peeked > size)
bytes_peeked = size;
memcpy(buffer_as_char_ptr, segment, bytes_peeked);
buffer_as_char_ptr += bytes_peeked;
size -= bytes_peeked;
total_bytes_peeked += bytes_peeked;
}
return total_bytes_peeked;
}
bool SegmentStream::isAtEnd() const {
return !reader_ || position_ >= reader_->size();
}
bool SegmentStream::rewind() {
position_ = 0;
return true;
}
bool SegmentStream::seek(size_t position) {
position_ = position;
return true;
}
bool SegmentStream::move(long offset) {
DCHECK_GT(offset, 0);
position_ += offset;
return true;
}
size_t SegmentStream::getLength() const {
if (reader_)
return reader_->size();
return 0;
}
} // namespace blink
// Copyright (c) 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SegmentStream_h
#define SegmentStream_h
#include <algorithm>
#include "platform/PlatformExport.h"
#include "platform/wtf/RefPtr.h"
#include "third_party/skia/include/core/SkStream.h"
namespace blink {
class SegmentReader;
class PLATFORM_EXPORT SegmentStream : public SkStream {
public:
SegmentStream();
SegmentStream(const SegmentStream&) = delete;
SegmentStream& operator=(const SegmentStream&) = delete;
SegmentStream(SegmentStream&&);
SegmentStream& operator=(SegmentStream&&);
~SegmentStream() override;
void SetReader(WTF::RefPtr<SegmentReader>);
// If a buffer has shrunk beyond the point we have read, it has been cleared.
// This allows clients to be aware of when data suddenly disappears.
bool IsCleared() const;
// From SkStream:
size_t read(void* buffer, size_t) override;
size_t peek(void* buffer, size_t) const override;
bool isAtEnd() const override;
bool rewind() override;
bool hasPosition() const override { return true; }
size_t getPosition() const override { return position_; }
bool seek(size_t position) override;
bool move(long offset) override;
bool hasLength() const override { return true; }
size_t getLength() const override;
private:
WTF::RefPtr<SegmentReader> reader_;
size_t position_ = 0;
};
} // namespace blink
#endif
// Copyright (c) 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "platform/image-decoders/SegmentStream.h"
#include <array>
#include <memory>
#include "platform/SharedBuffer.h"
#include "platform/image-decoders/SegmentReader.h"
#include "platform/wtf/PtrUtil.h"
#include "testing/gtest/include/gtest/gtest.h"
// SegmentStream has 4 accessors which do not alter state:
// - isCleared()
// - isAtEnd()
// - getPosition()
// - getLength()
//
// For every operation which changes state we can test:
// - the operation completed as expected,
// - the accessors did not change, and/or
// - the accessors changed in the way we expected.
//
// There are actually 2 more accessors:
// - hasPosition()
// - hasLength()
// but these should always return true to indicate that we can call getLength()
// for example. So let's not add them to every state changing operation and add
// needless complexity.
namespace blink {
namespace {
constexpr size_t kBufferAllocationSize = 20;
constexpr size_t kInsideBufferPosition = 10;
constexpr size_t kPastEndOfBufferPosition = 30;
::testing::AssertionResult IsCleared(const SegmentStream&);
::testing::AssertionResult IsAtEnd(const SegmentStream&);
::testing::AssertionResult PositionIsZero(const SegmentStream&);
::testing::AssertionResult PositionIsInsideBuffer(const SegmentStream&);
::testing::AssertionResult PositionIsAtEndOfBuffer(const SegmentStream&);
::testing::AssertionResult LengthIsZero(const SegmentStream&);
::testing::AssertionResult LengthIsAllocationSize(const SegmentStream&);
// Many of these tests require a SegmentStream with populated data.
//
// This function creates a buffer of size |kBufferAllocationSize| and prepares
// a SegmentStream with that buffer.
// This also populates other properties such as the length, cleared state, etc.
SegmentStream CreatePopulatedSegmentStream();
// This function creates a buffer of size |kBufferAllocationSize| to be used
// when populating a SegmentStream.
WTF::RefPtr<blink::SegmentReader> CreateSegmentReader();
size_t ReadFromSegmentStream(SegmentStream&,
size_t amount_to_read = kInsideBufferPosition);
size_t PeekIntoSegmentStream(SegmentStream&,
size_t amount_to_peek = kInsideBufferPosition);
} // namespace
TEST(SegmentStreamTest, DefaultConstructorShouldSetIsCleared) {
SegmentStream segment_stream;
ASSERT_TRUE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, DefaultConstructorShouldSetIsAtEnd) {
SegmentStream segment_stream;
ASSERT_TRUE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, DefaultContructorShouldClearPosition) {
SegmentStream segment_stream;
ASSERT_TRUE(PositionIsZero(segment_stream));
}
TEST(SegmentStreamTest, DefaultConstructorShouldHaveZeroLength) {
SegmentStream segment_stream;
ASSERT_TRUE(LengthIsZero(segment_stream));
}
TEST(SegmentStreamTest, MoveConstructorShouldSetIsClearedWhenRhsIsCleared) {
SegmentStream cleared_segment_stream;
ASSERT_TRUE(IsCleared(cleared_segment_stream));
SegmentStream move_constructed_segment_stream =
std::move(cleared_segment_stream);
ASSERT_TRUE(IsCleared(move_constructed_segment_stream));
}
TEST(SegmentStreamTest,
MoveConstructorShouldUnsetIsClearedWhenRhsIsNotCleared) {
SegmentStream uncleared_segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsCleared(uncleared_segment_stream));
SegmentStream move_constructed_segment_stream =
std::move(uncleared_segment_stream);
ASSERT_FALSE(IsCleared(move_constructed_segment_stream));
}
TEST(SegmentStreamTest, MoveConstructorShouldSetIsAtEndWhenRhsIsAtEnd) {
SegmentStream at_end_segment_stream;
ASSERT_TRUE(IsAtEnd(at_end_segment_stream));
SegmentStream move_constructed_segment_stream =
std::move(at_end_segment_stream);
ASSERT_TRUE(IsAtEnd(move_constructed_segment_stream));
}
TEST(SegmentStreamTest, MoveConstructorShouldUnsetIsAtEndWhenRhsIsNotAtEnd) {
SegmentStream not_at_end_segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(not_at_end_segment_stream));
SegmentStream move_constructed_segment_stream =
std::move(not_at_end_segment_stream);
ASSERT_FALSE(IsAtEnd(move_constructed_segment_stream));
}
TEST(SegmentStreamTest, MoveContructorShouldCopyRhsPosition) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
segment_stream.seek(kInsideBufferPosition);
ASSERT_EQ(kInsideBufferPosition, segment_stream.getPosition());
SegmentStream move_constructed_segment_stream = std::move(segment_stream);
ASSERT_EQ(kInsideBufferPosition,
move_constructed_segment_stream.getPosition());
}
TEST(SegmentStreamTest, MoveConstructorShouldCopyRhsLength) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_EQ(kBufferAllocationSize, segment_stream.getLength());
SegmentStream move_constructed_segment_stream = std::move(segment_stream);
ASSERT_EQ(kBufferAllocationSize, move_constructed_segment_stream.getLength());
}
TEST(SegmentStreamTest,
MoveAssignmentOperatorShouldSetIsClearedWhenRhsIsCleared) {
SegmentStream cleared_segment_stream;
ASSERT_TRUE(IsCleared(cleared_segment_stream));
SegmentStream move_assigned_segment_stream;
move_assigned_segment_stream = std::move(cleared_segment_stream);
ASSERT_TRUE(IsCleared(move_assigned_segment_stream));
}
TEST(SegmentStreamTest,
MoveAssignmentOperatorShouldUnsetIsClearedWhenRhsIsNotCleared) {
SegmentStream uncleared_segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsCleared(uncleared_segment_stream));
SegmentStream move_assigned_segment_stream;
move_assigned_segment_stream = std::move(uncleared_segment_stream);
ASSERT_FALSE(IsCleared(move_assigned_segment_stream));
}
TEST(SegmentStreamTest, MoveAssignmentOperatorShouldSetIsAtEndWhenRhsIsAtEnd) {
SegmentStream at_end_segment_stream;
ASSERT_TRUE(IsAtEnd(at_end_segment_stream));
SegmentStream move_assigned_segment_stream;
move_assigned_segment_stream = std::move(at_end_segment_stream);
ASSERT_TRUE(IsAtEnd(move_assigned_segment_stream));
}
TEST(SegmentStreamTest,
MoveAssignmentOperatorShouldUnsetIsAtEndWhenRhsIsNotAtEnd) {
SegmentStream not_at_end_segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(not_at_end_segment_stream));
SegmentStream move_assigned_segment_stream;
move_assigned_segment_stream = std::move(not_at_end_segment_stream);
ASSERT_FALSE(IsAtEnd(move_assigned_segment_stream));
}
TEST(SegmentStreamTest, MoveAssignmentOperatorShouldCopyRhsPosition) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
segment_stream.seek(kInsideBufferPosition);
ASSERT_EQ(kInsideBufferPosition, segment_stream.getPosition());
SegmentStream move_assigned_segment_stream;
move_assigned_segment_stream = std::move(segment_stream);
ASSERT_EQ(kInsideBufferPosition, move_assigned_segment_stream.getPosition());
}
TEST(SegmentStreamTest, MoveAssignmentOperatorShouldCopyRhsLength) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_EQ(kBufferAllocationSize, segment_stream.getLength());
SegmentStream move_assigned_segment_stream;
move_assigned_segment_stream = std::move(segment_stream);
ASSERT_EQ(kBufferAllocationSize, move_assigned_segment_stream.getLength());
}
TEST(SegmentStreamTest, SetReaderShouldUnsetIsCleared) {
SegmentStream segment_stream;
WTF::RefPtr<SegmentReader> segment_reader = CreateSegmentReader();
ASSERT_TRUE(IsCleared(segment_stream));
segment_stream.SetReader(segment_reader);
ASSERT_FALSE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldUnsetIsAtEnd) {
SegmentStream segment_stream;
WTF::RefPtr<SegmentReader> segment_reader = CreateSegmentReader();
ASSERT_TRUE(IsAtEnd(segment_stream));
segment_stream.SetReader(segment_reader);
ASSERT_FALSE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldNotChangePosition) {
SegmentStream segment_stream;
WTF::RefPtr<SegmentReader> segment_reader = CreateSegmentReader();
ASSERT_TRUE(PositionIsZero(segment_stream));
segment_stream.SetReader(segment_reader);
ASSERT_TRUE(PositionIsZero(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldUpdateLength) {
SegmentStream segment_stream;
WTF::RefPtr<SegmentReader> segment_reader = CreateSegmentReader();
ASSERT_FALSE(LengthIsAllocationSize(segment_stream));
segment_stream.SetReader(segment_reader);
ASSERT_TRUE(LengthIsAllocationSize(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldSetIsClearedWhenSetToNull) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsCleared(segment_stream));
segment_stream.SetReader(nullptr);
ASSERT_TRUE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldSetIsClearedWhenReaderSizeNotBigEnough) {
SegmentStream segment_stream;
segment_stream.seek(kPastEndOfBufferPosition);
RefPtr<blink::SegmentReader> segment_reader = CreateSegmentReader();
segment_stream.SetReader(segment_reader);
ASSERT_TRUE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldSetIsAtEndWhenReaderSizeNotBigEnough) {
SegmentStream segment_stream;
segment_stream.seek(kPastEndOfBufferPosition);
RefPtr<blink::SegmentReader> segment_reader = CreateSegmentReader();
segment_stream.SetReader(segment_reader);
ASSERT_TRUE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest,
SetReaderShouldNotChangePositionWhenReaderSizeNotBigEnough) {
SegmentStream segment_stream;
segment_stream.seek(kPastEndOfBufferPosition);
RefPtr<blink::SegmentReader> segment_reader = CreateSegmentReader();
segment_stream.SetReader(segment_reader);
ASSERT_EQ(kPastEndOfBufferPosition, segment_stream.getPosition());
}
TEST(SegmentStreamTest, SetReaderShouldChangeLengthWhenReaderSizeNotBigEnough) {
SegmentStream segment_stream;
segment_stream.seek(kPastEndOfBufferPosition);
RefPtr<blink::SegmentReader> segment_reader = CreateSegmentReader();
segment_stream.SetReader(segment_reader);
ASSERT_TRUE(LengthIsAllocationSize(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldSetIsAtEndWhenSetToNull) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(segment_stream));
segment_stream.SetReader(nullptr);
ASSERT_TRUE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, SetReaderShouldNotChangePositionWhenSetToNull) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
const size_t amount_read = ReadFromSegmentStream(segment_stream);
ASSERT_EQ(kInsideBufferPosition, amount_read);
const size_t pre_nulled_position = segment_stream.getPosition();
ASSERT_EQ(kInsideBufferPosition, pre_nulled_position);
segment_stream.SetReader(nullptr);
ASSERT_EQ(kInsideBufferPosition, segment_stream.getPosition());
}
TEST(SegmentStreamTest, SetReaderShouldClearLengthWhenSetToNull) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(LengthIsZero(segment_stream));
segment_stream.SetReader(nullptr);
ASSERT_TRUE(LengthIsZero(segment_stream));
}
TEST(SegmentStreamTest, ReadShouldConsumeBuffer) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
const size_t amount_read = ReadFromSegmentStream(segment_stream);
ASSERT_EQ(kInsideBufferPosition, amount_read);
}
TEST(SegmentStreamTest, ReadShouldNotClear) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ReadFromSegmentStream(segment_stream);
ASSERT_FALSE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, ReadShouldUpdateIsAtEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(segment_stream));
ReadFromSegmentStream(segment_stream, kBufferAllocationSize);
ASSERT_TRUE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, ReadShouldUpdatePosition) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
ReadFromSegmentStream(segment_stream);
ASSERT_TRUE(PositionIsInsideBuffer(segment_stream));
}
TEST(SegmentStreamTest, ReadShouldNotChangeLength) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_EQ(kBufferAllocationSize, segment_stream.getLength());
ReadFromSegmentStream(segment_stream);
ASSERT_EQ(kBufferAllocationSize, segment_stream.getLength());
}
TEST(SegmentStreamTest, ReadShouldConsumeBufferWithoutGoingPastTheEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
const size_t amount_read =
ReadFromSegmentStream(segment_stream, kPastEndOfBufferPosition);
ASSERT_EQ(kBufferAllocationSize, amount_read);
}
TEST(SegmentStreamTest, ReadShouldSetIsAtEndWhenPastEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(segment_stream));
ReadFromSegmentStream(segment_stream, kPastEndOfBufferPosition);
ASSERT_TRUE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, ReadShouldTruncatePositionWhenPastEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
ReadFromSegmentStream(segment_stream, kPastEndOfBufferPosition);
ASSERT_TRUE(PositionIsAtEndOfBuffer(segment_stream));
}
TEST(SegmentStreamTest, PeekShouldConsumeBuffer) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
const size_t amount_peeked = PeekIntoSegmentStream(segment_stream);
ASSERT_EQ(kInsideBufferPosition, amount_peeked);
}
TEST(SegmentStreamTest, PeekShouldNotClear) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
PeekIntoSegmentStream(segment_stream);
ASSERT_FALSE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, PeekShouldNotUpdateIsAtEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(segment_stream));
PeekIntoSegmentStream(segment_stream, kBufferAllocationSize);
ASSERT_FALSE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, PeekShouldNotUpdatePosition) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
PeekIntoSegmentStream(segment_stream);
ASSERT_TRUE(PositionIsZero(segment_stream));
}
TEST(SegmentStreamTest, PeekShouldNotChangeLength) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
PeekIntoSegmentStream(segment_stream);
ASSERT_EQ(kBufferAllocationSize, segment_stream.getLength());
}
TEST(SegmentStreamTest, PeekShouldConsumeBufferWithoutGoingPastTheEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
const size_t amount_peeked =
PeekIntoSegmentStream(segment_stream, kPastEndOfBufferPosition);
ASSERT_EQ(kBufferAllocationSize, amount_peeked);
}
TEST(SegmentStreamTest, PeekShouldNotSetIsAtEndWhenPastEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(segment_stream));
PeekIntoSegmentStream(segment_stream, kPastEndOfBufferPosition);
ASSERT_FALSE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, PeekShouldNotTruncatePositionWhenPastEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
PeekIntoSegmentStream(segment_stream, kPastEndOfBufferPosition);
ASSERT_TRUE(PositionIsZero(segment_stream));
}
TEST(SegmentStreamTest, RewindShouldNotClear) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ReadFromSegmentStream(segment_stream);
ASSERT_FALSE(IsCleared(segment_stream));
segment_stream.rewind();
ASSERT_FALSE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, RewindShouldNotSetAtEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ReadFromSegmentStream(segment_stream);
ASSERT_FALSE(IsAtEnd(segment_stream));
segment_stream.rewind();
ASSERT_FALSE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, RewindShouldResetPosition) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ReadFromSegmentStream(segment_stream);
ASSERT_TRUE(PositionIsInsideBuffer(segment_stream));
segment_stream.rewind();
ASSERT_TRUE(PositionIsZero(segment_stream));
}
TEST(SegmentStreamTest, RewindShouldNotChangeLength) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ReadFromSegmentStream(segment_stream);
segment_stream.rewind();
ASSERT_EQ(kBufferAllocationSize, segment_stream.getLength());
}
TEST(SegmentStreamTest, HasPositionShouldBeSupported) {
SegmentStream segment_stream;
ASSERT_TRUE(segment_stream.hasPosition());
}
TEST(SegmentStreamTest, SeekShouldNotSetIsCleared) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsCleared(segment_stream));
segment_stream.seek(kInsideBufferPosition);
ASSERT_FALSE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, SeekShouldNotSetIsAtEndWhenSeekingInsideTheBuffer) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(segment_stream));
segment_stream.seek(kInsideBufferPosition);
ASSERT_FALSE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, SeekShouldSetIsAtEndWhenSeekingToTheEndOfTheBuffer) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_FALSE(IsAtEnd(segment_stream));
segment_stream.seek(kBufferAllocationSize);
ASSERT_TRUE(IsAtEnd(segment_stream));
}
TEST(SegmentStreamTest, SeekShouldUpdatePosition) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
segment_stream.seek(kInsideBufferPosition);
ASSERT_EQ(kInsideBufferPosition, segment_stream.getPosition());
}
TEST(SegmentStreamTest, SeekShouldNotTruncatePositionWhenPastEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
segment_stream.seek(kPastEndOfBufferPosition);
ASSERT_EQ(kPastEndOfBufferPosition, segment_stream.getPosition());
}
TEST(SegmentStreamTest, SeekShouldNotUpdateLength) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
segment_stream.seek(kInsideBufferPosition);
ASSERT_EQ(kBufferAllocationSize, segment_stream.getLength());
}
TEST(SegmentStreamTest, MoveShouldNotSetCleared) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
segment_stream.move(kInsideBufferPosition);
ASSERT_FALSE(IsCleared(segment_stream));
}
TEST(SegmentStreamTest, MoveShouldUpdatePosition) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
segment_stream.move(kInsideBufferPosition);
ASSERT_TRUE(PositionIsInsideBuffer(segment_stream));
}
TEST(SegmentStreamTest, MoveShouldNotTruncatePositionWhenPastEnd) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(PositionIsZero(segment_stream));
segment_stream.move(kPastEndOfBufferPosition);
ASSERT_EQ(kPastEndOfBufferPosition, segment_stream.getPosition());
}
TEST(SegmentStreamTest, MoveShouldNotChangeLength) {
SegmentStream segment_stream = CreatePopulatedSegmentStream();
ASSERT_TRUE(LengthIsAllocationSize(segment_stream));
segment_stream.move(kInsideBufferPosition);
ASSERT_TRUE(LengthIsAllocationSize(segment_stream));
}
TEST(SegmentStreamTest, HasLengthShouldBeSupported) {
SegmentStream segment_stream;
ASSERT_TRUE(segment_stream.hasLength());
}
namespace {
::testing::AssertionResult IsCleared(const SegmentStream& segment_stream) {
if (segment_stream.IsCleared())
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << "SegmentStream is not clear";
}
::testing::AssertionResult IsAtEnd(const SegmentStream& segment_stream) {
if (segment_stream.isAtEnd())
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << "SegmentStream is not at the end";
}
::testing::AssertionResult PositionIsZero(const SegmentStream& segment_stream) {
if (segment_stream.getPosition() == 0ul)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << "SegmentStream position is not 0";
}
::testing::AssertionResult PositionIsInsideBuffer(
const SegmentStream& segment_stream) {
if (segment_stream.getPosition() == kInsideBufferPosition)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure()
<< "SegmentStream position is not inside the buffer";
}
::testing::AssertionResult PositionIsAtEndOfBuffer(
const SegmentStream& segment_stream) {
if (segment_stream.getPosition() == kBufferAllocationSize)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure()
<< "SegmentStream position is not at the end of the buffer";
}
::testing::AssertionResult LengthIsZero(const SegmentStream& segment_stream) {
if (segment_stream.getLength() == 0ul)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure() << "SegmentStream length is not 0";
}
::testing::AssertionResult LengthIsAllocationSize(
const SegmentStream& segment_stream) {
if (segment_stream.getLength() == kBufferAllocationSize)
return ::testing::AssertionSuccess();
return ::testing::AssertionFailure()
<< "SegmentStream length is not the allocation size";
}
SegmentStream CreatePopulatedSegmentStream() {
SegmentStream segment_stream;
segment_stream.SetReader(CreateSegmentReader());
return segment_stream;
}
WTF::RefPtr<blink::SegmentReader> CreateSegmentReader() {
std::array<char, kBufferAllocationSize> raw_buffer;
WTF::RefPtr<blink::SharedBuffer> shared_buffer =
blink::SharedBuffer::Create(raw_buffer.data(), kBufferAllocationSize);
WTF::RefPtr<blink::SegmentReader> segment_reader =
blink::SegmentReader::CreateFromSharedBuffer(std::move(shared_buffer));
return segment_reader;
}
size_t ReadFromSegmentStream(SegmentStream& segment_stream,
size_t amount_to_read) {
std::array<char, kBufferAllocationSize> read_buffer;
return segment_stream.read(read_buffer.data(), amount_to_read);
}
size_t PeekIntoSegmentStream(SegmentStream& segment_stream,
size_t amount_to_peek) {
std::array<char, kBufferAllocationSize> peek_buffer;
return segment_stream.peek(peek_buffer.data(), amount_to_peek);
}
} // namespace
} // namespace blink
......@@ -27,8 +27,9 @@
#include <limits>
#include <memory>
#include "platform/image-decoders/gif/GIFImageReader.h"
#include "platform/image-decoders/SegmentStream.h"
#include "platform/wtf/NotFound.h"
#include "third_party/skia/include/core/SkImageInfo.h"
namespace blink {
......@@ -36,248 +37,306 @@ GIFImageDecoder::GIFImageDecoder(AlphaOption alpha_option,
const ColorBehavior& color_behavior,
size_t max_decoded_bytes)
: ImageDecoder(alpha_option, color_behavior, max_decoded_bytes),
repetition_count_(kAnimationLoopOnce) {}
codec_(),
segment_stream_(nullptr),
prior_frame_(SkCodec::kNone) {}
GIFImageDecoder::~GIFImageDecoder() {}
GIFImageDecoder::~GIFImageDecoder() = default;
void GIFImageDecoder::OnSetData(SegmentReader* data) {
if (reader_)
reader_->SetData(data);
if (!data) {
if (segment_stream_)
segment_stream_->SetReader(nullptr);
return;
}
std::unique_ptr<SegmentStream> segment_stream;
if (!segment_stream_) {
segment_stream = std::make_unique<SegmentStream>();
segment_stream_ = segment_stream.get();
}
segment_stream_->SetReader(std::move(data));
if (!codec_) {
SkCodec::Result codec_creation_result;
codec_ = SkCodec::MakeFromStream(std::move(segment_stream),
&codec_creation_result, nullptr);
switch (codec_creation_result) {
case SkCodec::kSuccess: {
// SkCodec::MakeFromStream will read enough of the image to get the
// image size.
SkImageInfo image_info = codec_->getInfo();
SetSize(image_info.width(), image_info.height());
return;
}
case SkCodec::kIncompleteInput:
// |segment_stream_|'s ownership is passed into MakeFromStream.
// It is deleted if MakeFromStream fails.
// If MakeFromStream fails, we set |segment_stream_| to null so
// we aren't pointing to reclaimed memory.
segment_stream_ = nullptr;
return;
default:
SetFailed();
return;
}
}
}
int GIFImageDecoder::RepetitionCount() const {
if (!codec_ || segment_stream_->IsCleared())
return repetition_count_;
DCHECK(!Failed());
// This value can arrive at any point in the image data stream. Most GIFs
// in the wild declare it near the beginning of the file, so it usually is
// set by the time we've decoded the size, but (depending on the GIF and the
// packets sent back by the webserver) not always. If the reader hasn't
// seen a loop count yet, it will return kCLoopCountNotSeen, in which case we
// should default to looping once (the initial value for
// |repetition_count_|).
//
// There are some additional wrinkles here. First, ImageSource::Clear()
// may destroy the reader, making the result from the reader _less_
// authoritative on future calls if the recreated reader hasn't seen the
// loop count. We don't need to special-case this because in this case the
// new reader will once again return kCLoopCountNotSeen, and we won't
// overwrite the cached correct value.
// packets sent back by the webserver) not always.
//
// Second, a GIF might never set a loop count at all, in which case we
// should continue to treat it as a "loop once" animation. We don't need
// special code here either, because in this case we'll never change
// |repetition_count_| from its default value.
//
// Third, we use the same GIFImageReader for counting frames and we might
// see the loop count and then encounter a decoding error which happens
// later in the stream. It is also possible that no frames are in the
// stream. In these cases we should just loop once.
if (IsAllDataReceived() && ParseCompleted() && reader_->ImagesCount() == 1)
// SkCodec will parse forward in the file if the repetition count has not
// been seen yet.
int repetition_count = codec_->getRepetitionCount();
switch (repetition_count) {
case 0: {
// SkCodec returns 0 for both still images and animated images which
// only play once.
if (IsAllDataReceived() && codec_->getFrameCount() == 1) {
repetition_count_ = kAnimationNone;
else if (Failed() || (reader_ && (!reader_->ImagesCount())))
break;
}
repetition_count_ = kAnimationLoopOnce;
else if (reader_ && reader_->LoopCount() != kCLoopCountNotSeen)
repetition_count_ = reader_->LoopCount();
break;
}
case SkCodec::kRepetitionCountInfinite:
repetition_count_ = kAnimationLoopInfinite;
break;
default:
repetition_count_ = repetition_count;
break;
}
return repetition_count_;
}
bool GIFImageDecoder::FrameIsReceivedAtIndex(size_t index) const {
return reader_ && (index < reader_->ImagesCount()) &&
reader_->FrameContext(index)->IsComplete();
SkCodec::FrameInfo frame_info;
if (!codec_ || !codec_->getFrameInfo(index, &frame_info))
return false;
return frame_info.fFullyReceived;
}
TimeDelta GIFImageDecoder::FrameDurationAtIndex(size_t index) const {
return (reader_ && (index < reader_->ImagesCount()) &&
reader_->FrameContext(index)->IsHeaderDefined())
? TimeDelta::FromMilliseconds(
reader_->FrameContext(index)->DelayTime())
: TimeDelta();
if (index < frame_buffer_cache_.size())
return frame_buffer_cache_[index].Duration();
return TimeDelta();
}
bool GIFImageDecoder::SetFailed() {
reader_.reset();
segment_stream_ = nullptr;
codec_.reset();
return ImageDecoder::SetFailed();
}
bool GIFImageDecoder::HaveDecodedRow(size_t frame_index,
GIFRow::const_iterator row_begin,
size_t width,
size_t row_number,
unsigned repeat_count,
bool write_transparent_pixels) {
const GIFFrameContext* frame_context = reader_->FrameContext(frame_index);
// The pixel data and coordinates supplied to us are relative to the frame's
// origin within the entire image size, i.e.
// (frameC_context->xOffset, frame_context->yOffset). There is no guarantee
// that width == (size().width() - frame_context->xOffset), so
// we must ensure we don't run off the end of either the source data or the
// row's X-coordinates.
const int x_begin = frame_context->XOffset();
const int y_begin = frame_context->YOffset() + row_number;
const int x_end = std::min(static_cast<int>(frame_context->XOffset() + width),
Size().Width());
const int y_end = std::min(
static_cast<int>(frame_context->YOffset() + row_number + repeat_count),
Size().Height());
if (!width || (x_begin < 0) || (y_begin < 0) || (x_end <= x_begin) ||
(y_end <= y_begin))
return true;
const GIFColorMap::Table& color_table =
frame_context->LocalColorMap().IsDefined()
? frame_context->LocalColorMap().GetTable()
: reader_->GlobalColorMap().GetTable();
if (color_table.IsEmpty())
return true;
GIFColorMap::Table::const_iterator color_table_iter = color_table.begin();
// Initialize the frame if necessary.
ImageFrame& buffer = frame_buffer_cache_[frame_index];
if (!InitFrameBuffer(frame_index))
return false;
const size_t transparent_pixel = frame_context->TransparentPixel();
GIFRow::const_iterator row_end = row_begin + (x_end - x_begin);
ImageFrame::PixelData* current_address = buffer.GetAddr(x_begin, y_begin);
// We may or may not need to write transparent pixels to the buffer.
// If we're compositing against a previous image, it's wrong, and if
// we're writing atop a cleared, fully transparent buffer, it's
// unnecessary; but if we're decoding an interlaced gif and
// displaying it "Haeberli"-style, we must write these for passes
// beyond the first, or the initial passes will "show through" the
// later ones.
//
// The loops below are almost identical. One writes a transparent pixel
// and one doesn't based on the value of |write_transparent_pixels|.
// The condition check is taken out of the loop to enhance performance.
// This optimization reduces decoding time by about 15% for a 3MB image.
if (write_transparent_pixels) {
for (; row_begin != row_end; ++row_begin, ++current_address) {
const size_t source_value = *row_begin;
if ((source_value != transparent_pixel) &&
(source_value < color_table.size())) {
*current_address = color_table_iter[source_value];
} else {
*current_address = 0;
current_buffer_saw_alpha_ = true;
size_t GIFImageDecoder::ClearCacheExceptFrame(size_t index) {
// SkCodec attempts to report the earliest possible required frame, but it is
// possible that frame has been evicted, while a later frame (which could also
// be used as the required frame) is still cached. Try to preserve a frame
// that is still cached.
if (frame_buffer_cache_.size() <= 1)
return 0;
size_t index2 = kNotFound;
if (index < frame_buffer_cache_.size()) {
const ImageFrame& frame = frame_buffer_cache_[index];
if (frame.RequiredPreviousFrameIndex() != kNotFound &&
(!FrameStatusSufficientForSuccessors(index) ||
frame.GetDisposalMethod() == ImageFrame::kDisposeOverwritePrevious)) {
index2 = GetViableReferenceFrameIndex(index);
}
}
} else {
for (; row_begin != row_end; ++row_begin, ++current_address) {
const size_t source_value = *row_begin;
if ((source_value != transparent_pixel) &&
(source_value < color_table.size()))
*current_address = color_table_iter[source_value];
else
current_buffer_saw_alpha_ = true;
}
}
// Tell the frame to copy the row data if need be.
if (repeat_count > 1)
buffer.CopyRowNTimes(x_begin, x_end, y_begin, y_end);
buffer.SetPixelsChanged(true);
return true;
}
bool GIFImageDecoder::ParseCompleted() const {
return reader_ && reader_->ParseCompleted();
return ClearCacheExceptTwoFrames(index, index2);
}
bool GIFImageDecoder::FrameComplete(size_t frame_index) {
// Initialize the frame if necessary. Some GIFs insert do-nothing frames,
// in which case we never reach HaveDecodedRow() before getting here.
if (!InitFrameBuffer(frame_index))
return SetFailed();
if (!current_buffer_saw_alpha_)
CorrectAlphaWhenFrameBufferSawNoAlpha(frame_index);
frame_buffer_cache_[frame_index].SetStatus(ImageFrame::kFrameComplete);
size_t GIFImageDecoder::DecodeFrameCount() {
if (!codec_ || segment_stream_->IsCleared())
return frame_buffer_cache_.size();
return true;
return codec_->getFrameCount();
}
void GIFImageDecoder::ClearFrameBuffer(size_t frame_index) {
if (reader_ && frame_buffer_cache_[frame_index].GetStatus() ==
ImageFrame::kFramePartial) {
// Reset the state of the partial frame in the reader so that the frame
// can be decoded again when requested.
reader_->ClearDecodeState(frame_index);
void GIFImageDecoder::InitializeNewFrame(size_t index) {
DCHECK(codec_);
ImageFrame& frame = frame_buffer_cache_[index];
// SkCodec does not inform us if only a portion of the image was updated
// in the current frame. Because of this, rather than correctly filling in
// the frame rect, we set the frame rect to be the image's full size.
// The original frame rect is not used, anyway.
IntSize full_image_size = Size();
frame.SetOriginalFrameRect(IntRect(IntPoint(), full_image_size));
SkCodec::FrameInfo frame_info;
bool frame_info_received = codec_->getFrameInfo(index, &frame_info);
DCHECK(frame_info_received);
frame.SetDuration(TimeDelta::FromMilliseconds(frame_info.fDuration));
size_t required_previous_frame_index;
if (frame_info.fRequiredFrame == SkCodec::kNone) {
required_previous_frame_index = kNotFound;
} else {
required_previous_frame_index =
static_cast<size_t>(frame_info.fRequiredFrame);
}
ImageDecoder::ClearFrameBuffer(frame_index);
}
size_t GIFImageDecoder::DecodeFrameCount() {
Parse(kGIFFrameCountQuery);
// If decoding fails, |reader_| will have been destroyed. Instead of
// returning 0 in this case, return the existing number of frames. This way
// if we get halfway through the image before decoding fails, we won't
// suddenly start reporting that the image has zero frames.
return Failed() ? frame_buffer_cache_.size() : reader_->ImagesCount();
}
frame.SetRequiredPreviousFrameIndex(required_previous_frame_index);
void GIFImageDecoder::InitializeNewFrame(size_t index) {
ImageFrame* buffer = &frame_buffer_cache_[index];
const GIFFrameContext* frame_context = reader_->FrameContext(index);
buffer->SetOriginalFrameRect(
Intersection(frame_context->FrameRect(), IntRect(IntPoint(), Size())));
buffer->SetDuration(TimeDelta::FromMilliseconds(frame_context->DelayTime()));
buffer->SetDisposalMethod(frame_context->GetDisposalMethod());
buffer->SetRequiredPreviousFrameIndex(
FindRequiredPreviousFrame(index, false));
ImageFrame::DisposalMethod disposal_method = ImageFrame::kDisposeNotSpecified;
switch (frame_info.fDisposalMethod) {
case SkCodecAnimation::DisposalMethod::kKeep:
disposal_method = ImageFrame::kDisposeKeep;
break;
case SkCodecAnimation::DisposalMethod::kRestoreBGColor:
disposal_method = ImageFrame::kDisposeOverwriteBgcolor;
break;
case SkCodecAnimation::DisposalMethod::kRestorePrevious:
disposal_method = ImageFrame::kDisposeOverwritePrevious;
break;
}
frame.SetDisposalMethod(disposal_method);
}
void GIFImageDecoder::Decode(size_t index) {
Parse(kGIFFrameCountQuery);
if (Failed())
if (!codec_ || segment_stream_->IsCleared())
return;
DCHECK(!Failed());
DCHECK_LT(index, frame_buffer_cache_.size());
UpdateAggressivePurging(index);
Vector<size_t> frames_to_decode = FindFramesToDecode(index);
for (auto i = frames_to_decode.rbegin(); i != frames_to_decode.rend(); ++i) {
if (!reader_->Decode(*i)) {
SetFailed();
ImageFrame& frame = frame_buffer_cache_[index];
if (frame.GetStatus() == ImageFrame::kFrameEmpty) {
size_t required_previous_frame_index = frame.RequiredPreviousFrameIndex();
if (required_previous_frame_index == kNotFound) {
frame.AllocatePixelData(Size().Width(), Size().Height(),
ColorSpaceForSkImages());
frame.ZeroFillPixelData();
prior_frame_ = SkCodec::kNone;
} else {
size_t previous_frame_index = GetViableReferenceFrameIndex(index);
if (previous_frame_index == kNotFound) {
previous_frame_index = required_previous_frame_index;
Decode(previous_frame_index);
if (Failed()) {
return;
}
// If this returns false, we need more data to continue decoding.
if (!PostDecodeProcessing(*i))
break;
}
// It is also a fatal error if all data is received and we have decoded all
// frames available but the file is truncated.
if (index >= frame_buffer_cache_.size() - 1 && IsAllDataReceived() &&
reader_ && !reader_->ParseCompleted())
// We try to reuse |previous_frame| as starting state to avoid copying.
// If CanReusePreviousFrameBuffer returns false, we must copy the data
// since |previous_frame| is necessary to decode this or later frames.
// In that case copy the data instead.
ImageFrame& previous_frame = frame_buffer_cache_[previous_frame_index];
if ((!CanReusePreviousFrameBuffer(index) ||
!frame.TakeBitmapDataIfWritable(&previous_frame)) &&
!frame.CopyBitmapData(previous_frame)) {
SetFailed();
}
void GIFImageDecoder::Parse(GIFParseQuery query) {
if (Failed())
return;
}
prior_frame_ = previous_frame_index;
}
}
if (!reader_) {
reader_ = WTF::MakeUnique<GIFImageReader>(this);
reader_->SetData(data_);
if (frame.GetStatus() == ImageFrame::kFrameAllocated) {
SkImageInfo image_info = codec_->getInfo()
.makeColorType(kN32_SkColorType)
.makeColorSpace(ColorSpaceForSkImages());
SkCodec::Options options;
options.fFrameIndex = index;
options.fPriorFrame = prior_frame_;
options.fZeroInitialized = SkCodec::kNo_ZeroInitialized;
SkCodec::Result start_incremental_decode_result =
codec_->startIncrementalDecode(image_info, frame.Bitmap().getPixels(),
frame.Bitmap().rowBytes(), &options);
switch (start_incremental_decode_result) {
case SkCodec::kSuccess:
break;
case SkCodec::kIncompleteInput:
return;
default:
SetFailed();
return;
}
frame.SetStatus(ImageFrame::kFramePartial);
}
if (!reader_->Parse(query))
SkCodec::Result incremental_decode_result = codec_->incrementalDecode();
switch (incremental_decode_result) {
case SkCodec::kSuccess: {
SkCodec::FrameInfo frame_info;
bool frame_info_received = codec_->getFrameInfo(index, &frame_info);
DCHECK(frame_info_received);
frame.SetHasAlpha(frame_info.fAlpha != SkEncodedInfo::kOpaque_Alpha);
frame.SetPixelsChanged(true);
frame.SetStatus(ImageFrame::kFrameComplete);
PostDecodeProcessing(index);
break;
}
case SkCodec::kIncompleteInput:
frame.SetPixelsChanged(true);
if (FrameIsReceivedAtIndex(index) || IsAllDataReceived()) {
SetFailed();
}
break;
default:
SetFailed();
break;
}
}
void GIFImageDecoder::OnInitFrameBuffer(size_t frame_index) {
current_buffer_saw_alpha_ = false;
bool GIFImageDecoder::CanReusePreviousFrameBuffer(size_t index) const {
DCHECK_LT(index, frame_buffer_cache_.size());
return frame_buffer_cache_[index].GetDisposalMethod() !=
ImageFrame::kDisposeOverwritePrevious;
}
bool GIFImageDecoder::CanReusePreviousFrameBuffer(size_t frame_index) const {
DCHECK(frame_index < frame_buffer_cache_.size());
return frame_buffer_cache_[frame_index].GetDisposalMethod() !=
ImageFrame::kDisposeOverwritePrevious;
size_t GIFImageDecoder::GetViableReferenceFrameIndex(
size_t dependent_index) const {
DCHECK_LT(dependent_index, frame_buffer_cache_.size());
size_t required_previous_frame_index =
frame_buffer_cache_[dependent_index].RequiredPreviousFrameIndex();
// Any frame in the range [|required_previous_frame_index|, |dependent_index|)
// which has a disposal method other than kRestorePrevious can be provided as
// the prior frame to SkCodec.
//
// SkCodec sets SkCodec::FrameInfo::fRequiredFrame to the earliest frame which
// can be used. This might come up when several frames update the same
// subregion. If that same subregion is about to be overwritten, it doesn't
// matter which frame in that chain is provided.
DCHECK_NE(required_previous_frame_index, kNotFound);
// Loop backwards because the frames most likely to be in cache are the most
// recent.
for (size_t i = dependent_index - 1; i != required_previous_frame_index;
i--) {
const ImageFrame& frame = frame_buffer_cache_[i];
if (frame.GetDisposalMethod() == ImageFrame::kDisposeOverwritePrevious)
continue;
if (frame.GetStatus() == ImageFrame::kFrameComplete) {
return i;
}
}
return kNotFound;
}
} // namespace blink
......@@ -29,13 +29,13 @@
#include <memory>
#include "platform/image-decoders/ImageDecoder.h"
#include "platform/wtf/Noncopyable.h"
#include "platform/wtf/RefPtr.h"
#include "platform/wtf/Time.h"
#include "third_party/skia/include/codec/SkCodec.h"
namespace blink {
class GIFImageReader;
using GIFRow = Vector<unsigned char>;
class SegmentStream;
// This class decodes the GIF image format.
class PLATFORM_EXPORT GIFImageDecoder final : public ImageDecoder {
......@@ -45,56 +45,43 @@ class PLATFORM_EXPORT GIFImageDecoder final : public ImageDecoder {
GIFImageDecoder(AlphaOption, const ColorBehavior&, size_t max_decoded_bytes);
~GIFImageDecoder() override;
enum GIFParseQuery { kGIFSizeQuery, kGIFFrameCountQuery };
// ImageDecoder:
String FilenameExtension() const override { return "gif"; }
void OnSetData(SegmentReader* data) override;
int RepetitionCount() const override;
bool FrameIsReceivedAtIndex(size_t) const override;
TimeDelta FrameDurationAtIndex(size_t) const override;
// CAUTION: SetFailed() deletes |reader_|. Be careful to avoid
// accessing deleted memory, especially when calling this from inside
// GIFImageReader!
// CAUTION: SetFailed() deletes |codec_|. Be careful to avoid
// accessing deleted memory.
bool SetFailed() override;
// Callbacks from the GIF reader.
bool HaveDecodedRow(size_t frame_index,
GIFRow::const_iterator row_begin,
size_t width,
size_t row_number,
unsigned repeat_count,
bool write_transparent_pixels);
bool FrameComplete(size_t frame_index);
// For testing.
bool ParseCompleted() const;
size_t ClearCacheExceptFrame(size_t) override;
private:
// ImageDecoder:
void ClearFrameBuffer(size_t frame_index) override;
virtual void DecodeSize() { Parse(kGIFSizeQuery); }
void DecodeSize() override {}
size_t DecodeFrameCount() override;
void InitializeNewFrame(size_t) override;
void Decode(size_t) override;
// Parses as much as is needed to answer the query, ignoring bitmap
// data. If parsing fails, sets the "decode failure" flag.
void Parse(GIFParseQuery);
// Reset the alpha tracker for this frame. Before calling this method, the
// caller must verify that the frame exists.
void OnInitFrameBuffer(size_t) override;
// When the disposal method of the frame is DisposeOverWritePrevious, the
// next frame will use the previous frame's buffer as its starting state, so
// next frame will use a previous frame's buffer as its starting state, so
// we can't take over the data in that case. Before calling this method, the
// caller must verify that the frame exists.
bool CanReusePreviousFrameBuffer(size_t) const override;
bool current_buffer_saw_alpha_;
mutable int repetition_count_;
std::unique_ptr<GIFImageReader> reader_;
// When a frame depends on a previous frame's content, there is a list of
// candidate reference frames. This function will find a previous frame from
// that list which satisfies the requirements of being a reference frame
// (kFrameComplete, not kDisposeOverwritePrevious).
// If no frame is found, it returns kNotFound.
size_t GetViableReferenceFrameIndex(size_t) const;
std::unique_ptr<SkCodec> codec_;
// |codec_| owns the SegmentStream, but we need access to it to append more
// data as it arrives.
SegmentStream* segment_stream_;
mutable int repetition_count_ = kAnimationLoopOnce;
int prior_frame_;
};
} // namespace blink
......
......@@ -58,16 +58,8 @@ void TestRepetitionCount(const char* dir,
RefPtr<SharedBuffer> data = ReadFile(dir, file);
ASSERT_TRUE(data.get());
decoder->SetData(data.get(), true);
EXPECT_EQ(kAnimationLoopOnce,
decoder->RepetitionCount()); // Default value before decode.
for (size_t i = 0; i < decoder->FrameCount(); ++i) {
ImageFrame* frame = decoder->DecodeFrameBufferAtIndex(i);
EXPECT_EQ(ImageFrame::kFrameComplete, frame->GetStatus());
}
EXPECT_EQ(expected_repetition_count,
decoder->RepetitionCount()); // Expected value after decode.
EXPECT_EQ(expected_repetition_count, decoder->RepetitionCount());
}
} // anonymous namespace
......@@ -78,7 +70,6 @@ TEST(GIFImageDecoderTest, decodeTwoFrames) {
RefPtr<SharedBuffer> data = ReadFile(kLayoutTestResourcesDir, "animated.gif");
ASSERT_TRUE(data.get());
decoder->SetData(data.get(), true);
EXPECT_EQ(kAnimationLoopOnce, decoder->RepetitionCount());
ImageFrame* frame = decoder->DecodeFrameBufferAtIndex(0);
uint32_t generation_id0 = frame->Bitmap().getGenerationID();
......@@ -103,10 +94,6 @@ TEST(GIFImageDecoderTest, parseAndDecode) {
RefPtr<SharedBuffer> data = ReadFile(kLayoutTestResourcesDir, "animated.gif");
ASSERT_TRUE(data.get());
decoder->SetData(data.get(), true);
EXPECT_EQ(kAnimationLoopOnce, decoder->RepetitionCount());
// This call will parse the entire file.
EXPECT_EQ(2u, decoder->FrameCount());
ImageFrame* frame = decoder->DecodeFrameBufferAtIndex(0);
EXPECT_EQ(ImageFrame::kFrameComplete, frame->GetStatus());
......@@ -320,10 +307,13 @@ TEST(GIFImageDecoderTest, invalidDisposalMethod) {
EXPECT_EQ(2u, decoder->FrameCount());
// Disposal method 4 is converted to ImageFrame::DisposeOverwritePrevious.
// This is because some specs say method 3 is "overwrite previous", while
// others say setting the third bit (i.e. method 4) is.
EXPECT_EQ(ImageFrame::kDisposeOverwritePrevious,
decoder->DecodeFrameBufferAtIndex(0)->GetDisposalMethod());
// Disposal method 5 is ignored.
EXPECT_EQ(ImageFrame::kDisposeNotSpecified,
// Unknown disposal methods (5 in this case) are converted to
// ImageFrame::DisposeKeep.
EXPECT_EQ(ImageFrame::kDisposeKeep,
decoder->DecodeFrameBufferAtIndex(1)->GetDisposalMethod());
}
......@@ -390,11 +380,11 @@ TEST(GIFImageDecoderTest, bitmapAlphaType) {
ImageFrame* premul_frame = premul_decoder->DecodeFrameBufferAtIndex(0);
EXPECT_TRUE(premul_frame &&
premul_frame->GetStatus() != ImageFrame::kFrameComplete);
EXPECT_EQ(premul_frame->Bitmap().alphaType(), kPremul_SkAlphaType);
EXPECT_EQ(kPremul_SkAlphaType, premul_frame->Bitmap().alphaType());
ImageFrame* unpremul_frame = unpremul_decoder->DecodeFrameBufferAtIndex(0);
EXPECT_TRUE(unpremul_frame &&
unpremul_frame->GetStatus() != ImageFrame::kFrameComplete);
EXPECT_EQ(unpremul_frame->Bitmap().alphaType(), kUnpremul_SkAlphaType);
EXPECT_EQ(kUnpremul_SkAlphaType, unpremul_frame->Bitmap().alphaType());
// Fully decoded frame => the frame alpha type is known (opaque).
premul_decoder->SetData(full_data_buffer.get(), true);
......@@ -404,11 +394,11 @@ TEST(GIFImageDecoderTest, bitmapAlphaType) {
premul_frame = premul_decoder->DecodeFrameBufferAtIndex(0);
EXPECT_TRUE(premul_frame &&
premul_frame->GetStatus() == ImageFrame::kFrameComplete);
EXPECT_EQ(premul_frame->Bitmap().alphaType(), kOpaque_SkAlphaType);
EXPECT_EQ(kOpaque_SkAlphaType, premul_frame->Bitmap().alphaType());
unpremul_frame = unpremul_decoder->DecodeFrameBufferAtIndex(0);
EXPECT_TRUE(unpremul_frame &&
unpremul_frame->GetStatus() == ImageFrame::kFrameComplete);
EXPECT_EQ(unpremul_frame->Bitmap().alphaType(), kOpaque_SkAlphaType);
EXPECT_EQ(kOpaque_SkAlphaType, unpremul_frame->Bitmap().alphaType());
}
namespace {
......
/* -*- Mode: C; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Chris Saari <saari@netscape.com>
* Apple Computer
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
The Graphics Interchange Format(c) is the copyright property of CompuServe
Incorporated. Only CompuServe Incorporated is authorized to define, redefine,
enhance, alter, modify or change in any way the definition of the format.
CompuServe Incorporated hereby grants a limited, non-exclusive, royalty-free
license for the use of the Graphics Interchange Format(sm) in computer
software; computer software utilizing GIF(sm) must acknowledge ownership of the
Graphics Interchange Format and its Service Mark by CompuServe Incorporated, in
User and Technical Documentation. Computer software utilizing GIF, which is
distributed or may be distributed without User or Technical Documentation must
display to the screen or printer a message acknowledging ownership of the
Graphics Interchange Format and the Service Mark by CompuServe Incorporated; in
this case, the acknowledgement may be displayed in an opening screen or leading
banner, or a closing screen or trailing banner. A message such as the following
may be used:
"The Graphics Interchange Format(c) is the Copyright property of
CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated."
For further information, please contact :
CompuServe Incorporated
Graphics Technology Department
5000 Arlington Center Boulevard
Columbus, Ohio 43220
U. S. A.
CompuServe Incorporated maintains a mailing list with all those individuals and
organizations who wish to receive copies of this document when it is corrected
or revised. This service is offered free of charge; please provide us with your
mailing address.
*/
#include "platform/image-decoders/gif/GIFImageReader.h"
#include <string.h>
#include "platform/image-decoders/FastSharedBufferReader.h"
#include "platform/wtf/PtrUtil.h"
namespace blink {
namespace {
static constexpr unsigned kMaxColors = 256u;
static constexpr int kBytesPerColormapEntry = 3;
} // namespace
// GETN(n, s) requests at least 'n' bytes available from 'q', at start of state
// 's'.
//
// Note: the hold will never need to be bigger than 256 bytes, as each GIF block
// (except colormaps) can never be bigger than 256 bytes. Colormaps are directly
// copied in the resp. global_colormap or dynamically allocated local_colormap,
// so a fixed buffer in GIFImageReader is good enough. This buffer is only
// needed to copy left-over data from one GifWrite call to the next.
#define GETN(n, s) \
do { \
bytes_to_consume_ = (n); \
state_ = (s); \
} while (0)
// Get a 16-bit value stored in little-endian format.
#define GETINT16(p) ((p)[1] << 8 | (p)[0])
// Send the data to the display front-end.
bool GIFLZWContext::OutputRow(GIFRow::const_iterator row_begin) {
int drow_start = irow;
int drow_end = irow;
// Haeberli-inspired hack for interlaced GIFs: Replicate lines while
// displaying to diminish the "venetian-blind" effect as the image is
// loaded. Adjust pixel vertical positions to avoid the appearance of the
// image crawling up the screen as successive passes are drawn.
if (frame_context_->ProgressiveDisplay() && frame_context_->Interlaced() &&
ipass < 4) {
unsigned row_dup = 0;
unsigned row_shift = 0;
switch (ipass) {
case 1:
row_dup = 7;
row_shift = 3;
break;
case 2:
row_dup = 3;
row_shift = 1;
break;
case 3:
row_dup = 1;
row_shift = 0;
break;
default:
break;
}
drow_start -= row_shift;
drow_end = drow_start + row_dup;
// Extend if bottom edge isn't covered because of the shift upward.
if (((frame_context_->Height() - 1) - drow_end) <= row_shift)
drow_end = frame_context_->Height() - 1;
// Clamp first and last rows to upper and lower edge of image.
if (drow_start < 0)
drow_start = 0;
if ((unsigned)drow_end >= frame_context_->Height())
drow_end = frame_context_->Height() - 1;
}
// Protect against too much image data.
if ((unsigned)drow_start >= frame_context_->Height())
return true;
// CALLBACK: Let the client know we have decoded a row.
if (!client_->HaveDecodedRow(frame_context_->FrameId(), row_begin,
frame_context_->Width(), drow_start,
drow_end - drow_start + 1,
frame_context_->ProgressiveDisplay() &&
frame_context_->Interlaced() && ipass > 1))
return false;
if (!frame_context_->Interlaced()) {
irow++;
} else {
do {
switch (ipass) {
case 1:
irow += 8;
if (irow >= frame_context_->Height()) {
ipass++;
irow = 4;
}
break;
case 2:
irow += 8;
if (irow >= frame_context_->Height()) {
ipass++;
irow = 2;
}
break;
case 3:
irow += 4;
if (irow >= frame_context_->Height()) {
ipass++;
irow = 1;
}
break;
case 4:
irow += 2;
if (irow >= frame_context_->Height()) {
ipass++;
irow = 0;
}
break;
default:
break;
}
} while (irow > (frame_context_->Height() - 1));
}
return true;
}
// Performs Lempel-Ziv-Welch decoding. Returns whether decoding was successful.
// If successful, the block will have been completely consumed and/or
// rowsRemaining will be 0.
bool GIFLZWContext::DoLZW(const unsigned char* block, size_t bytes_in_block) {
const size_t width = frame_context_->Width();
if (row_iter == row_buffer.end())
return true;
for (const unsigned char* ch = block; bytes_in_block-- > 0; ch++) {
// Feed the next byte into the decoder's 32-bit input buffer.
datum += ((int)*ch) << bits;
bits += 8;
// Check for underflow of decoder's 32-bit input buffer.
while (bits >= codesize) {
// Get the leading variable-length symbol from the data stream.
int code = datum & codemask;
datum >>= codesize;
bits -= codesize;
// Reset the dictionary to its original state, if requested.
if (code == clear_code) {
codesize = frame_context_->DataSize() + 1;
codemask = (1 << codesize) - 1;
avail = clear_code + 2;
oldcode = -1;
continue;
}
// Check for explicit end-of-stream code.
if (code == (clear_code + 1)) {
// end-of-stream should only appear after all image data.
if (!rows_remaining)
return true;
return false;
}
const int temp_code = code;
unsigned short code_length = 0;
if (code < avail) {
// This is a pre-existing code, so we already know what it
// encodes.
code_length = suffix_length[code];
row_iter += code_length;
} else if (code == avail && oldcode != -1) {
// This is a new code just being added to the dictionary.
// It must encode the contents of the previous code, plus
// the first character of the previous code again.
code_length = suffix_length[oldcode] + 1;
row_iter += code_length;
*--row_iter = firstchar;
code = oldcode;
} else {
// This is an invalid code. The dictionary is just initialized
// and the code is incomplete. We don't know how to handle
// this case.
return false;
}
while (code >= clear_code) {
*--row_iter = suffix[code];
code = prefix[code];
}
*--row_iter = firstchar = suffix[code];
// Define a new codeword in the dictionary as long as we've read
// more than one value from the stream.
if (avail < kMaxDictionaryEntries && oldcode != -1) {
prefix[avail] = oldcode;
suffix[avail] = firstchar;
suffix_length[avail] = suffix_length[oldcode] + 1;
++avail;
// If we've used up all the codewords of a given length
// increase the length of codewords by one bit, but don't
// exceed the specified maximum codeword size.
if (!(avail & codemask) && avail < kMaxDictionaryEntries) {
++codesize;
codemask += avail;
}
}
oldcode = temp_code;
row_iter += code_length;
// Output as many rows as possible.
GIFRow::iterator row_begin = row_buffer.begin();
for (; row_begin + width <= row_iter; row_begin += width) {
if (!OutputRow(row_begin))
return false;
rows_remaining--;
if (!rows_remaining)
return true;
}
if (row_begin != row_buffer.begin()) {
// Move the remaining bytes to the beginning of the buffer.
const size_t bytes_to_copy = row_iter - row_begin;
memcpy(row_buffer.begin(), row_begin, bytes_to_copy);
row_iter = row_buffer.begin() + bytes_to_copy;
}
}
}
return true;
}
void GIFColorMap::BuildTable(FastSharedBufferReader* reader) {
if (!is_defined_ || !table_.IsEmpty())
return;
CHECK_LE(position_ + colors_ * kBytesPerColormapEntry, reader->size());
DCHECK_LE(colors_, kMaxColors);
char buffer[kMaxColors * kBytesPerColormapEntry];
const unsigned char* src_colormap =
reinterpret_cast<const unsigned char*>(reader->GetConsecutiveData(
position_, colors_ * kBytesPerColormapEntry, buffer));
table_.resize(colors_);
for (Table::iterator iter = table_.begin(); iter != table_.end(); ++iter) {
*iter = SkPackARGB32NoCheck(255, src_colormap[0], src_colormap[1],
src_colormap[2]);
src_colormap += kBytesPerColormapEntry;
}
}
// Decodes this frame. |frameDecoded| will be set to true if the entire frame is
// decoded. Returns true if decoding progressed further than before without
// error, or there is insufficient new data to decode further. Otherwise, a
// decoding error occurred; returns false in this case.
bool GIFFrameContext::Decode(FastSharedBufferReader* reader,
GIFImageDecoder* client,
bool* frame_decoded) {
local_color_map_.BuildTable(reader);
*frame_decoded = false;
if (!lzw_context_) {
// Wait for more data to properly initialize GIFLZWContext.
if (!IsDataSizeDefined() || !IsHeaderDefined())
return true;
lzw_context_ = WTF::MakeUnique<GIFLZWContext>(client, this);
if (!lzw_context_->PrepareToDecode()) {
lzw_context_.reset();
return false;
}
current_lzw_block_ = 0;
}
// Some bad GIFs have extra blocks beyond the last row, which we don't want to
// decode.
while (current_lzw_block_ < lzw_blocks_.size() &&
lzw_context_->HasRemainingRows()) {
size_t block_position = lzw_blocks_[current_lzw_block_].block_position;
size_t block_size = lzw_blocks_[current_lzw_block_].block_size;
if (block_position + block_size > reader->size())
return false;
while (block_size) {
const char* segment = 0;
size_t segment_length = reader->GetSomeData(segment, block_position);
size_t decode_size = std::min(segment_length, block_size);
if (!lzw_context_->DoLZW(reinterpret_cast<const unsigned char*>(segment),
decode_size))
return false;
block_position += decode_size;
block_size -= decode_size;
}
++current_lzw_block_;
}
// If this frame is data complete then the previous loop must have completely
// decoded all LZW blocks.
// There will be no more decoding for this frame so it's time to cleanup.
if (IsComplete()) {
*frame_decoded = true;
lzw_context_.reset();
}
return true;
}
// Decodes a frame using GIFFrameContext:decode(). Returns true if decoding has
// progressed, or false if an error has occurred.
bool GIFImageReader::Decode(size_t frame_index) {
FastSharedBufferReader reader(data_);
global_color_map_.BuildTable(&reader);
bool frame_decoded = false;
GIFFrameContext* current_frame = frames_[frame_index].get();
return current_frame->Decode(&reader, client_, &frame_decoded) &&
(!frame_decoded || client_->FrameComplete(frame_index));
}
bool GIFImageReader::Parse(GIFImageDecoder::GIFParseQuery query) {
if (bytes_read_ >= data_->size()) {
// This data has already been parsed. For example, in deferred
// decoding, a DecodingImageGenerator with more data may have already
// used this same ImageDecoder to decode. This can happen if two
// SkImages created by a DeferredImageDecoder are drawn/prerolled
// out of order (with respect to how much data they had at creation
// time).
return !client_->Failed();
}
return ParseData(bytes_read_, data_->size() - bytes_read_, query);
}
// Parse incoming GIF data stream into internal data structures.
// Return true if parsing has progressed or there is not enough data.
// Return false if a fatal error is encountered.
bool GIFImageReader::ParseData(size_t data_position,
size_t len,
GIFImageDecoder::GIFParseQuery query) {
if (!len) {
// No new data has come in since the last call, just ignore this call.
return true;
}
if (len < bytes_to_consume_)
return true;
FastSharedBufferReader reader(data_);
// A read buffer of 16 bytes is enough to accomodate all possible reads for
// parsing.
char read_buffer[16];
// Read as many components from |m_data| as possible. At the beginning of each
// iteration, |dataPosition| is advanced by m_bytesToConsume to point to the
// next component. |len| is decremented accordingly.
while (len >= bytes_to_consume_) {
const size_t current_component_position = data_position;
// Mark the current component as consumed. Note that currentComponent will
// remain pointed at this component until the next loop iteration.
data_position += bytes_to_consume_;
len -= bytes_to_consume_;
switch (state_) {
case GIFLZW:
DCHECK(!frames_.IsEmpty());
// m_bytesToConsume is the current component size because it hasn't been
// updated.
frames_.back()->AddLzwBlock(current_component_position,
bytes_to_consume_);
GETN(1, kGIFSubBlock);
break;
case kGIFLZWStart: {
DCHECK(!frames_.IsEmpty());
frames_.back()->SetDataSize(static_cast<unsigned char>(
reader.GetOneByte(current_component_position)));
GETN(1, kGIFSubBlock);
break;
}
case kGIFType: {
const char* current_component = reader.GetConsecutiveData(
current_component_position, 6, read_buffer);
// All GIF files begin with "GIF87a" or "GIF89a".
if (!memcmp(current_component, "GIF89a", 6))
version_ = 89;
else if (!memcmp(current_component, "GIF87a", 6))
version_ = 87;
else
return false;
GETN(7, kGIFGlobalHeader);
break;
}
case kGIFGlobalHeader: {
const unsigned char* current_component =
reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData(
current_component_position, 5, read_buffer));
// This is the height and width of the "screen" or frame into which
// images are rendered. The individual images can be smaller than
// the screen size and located with an origin anywhere within the
// screen.
// Note that we don't inform the client of the size yet, as it might
// change after we read the first frame's image header.
screen_width_ = GETINT16(current_component);
screen_height_ = GETINT16(current_component + 2);
const size_t global_color_map_colors = 2
<< (current_component[4] & 0x07);
if ((current_component[4] & 0x80) &&
global_color_map_colors > 0) { /* global map */
global_color_map_.SetTablePositionAndSize(data_position,
global_color_map_colors);
GETN(kBytesPerColormapEntry * global_color_map_colors,
kGIFGlobalColormap);
break;
}
GETN(1, kGIFImageStart);
break;
}
case kGIFGlobalColormap: {
global_color_map_.SetDefined();
GETN(1, kGIFImageStart);
break;
}
case kGIFImageStart: {
const char current_component =
reader.GetOneByte(current_component_position);
if (current_component == '!') { // extension.
GETN(2, kGIFExtension);
break;
}
if (current_component == ',') { // image separator.
GETN(9, kGIFImageHeader);
break;
}
// If we get anything other than ',' (image separator), '!'
// (extension), or ';' (trailer), there is extraneous data
// between blocks. The GIF87a spec tells us to keep reading
// until we find an image separator, but GIF89a says such
// a file is corrupt. We follow Mozilla's implementation and
// proceed as if the file were correctly terminated, so the
// GIF will display.
GETN(0, kGIFDone);
break;
}
case kGIFExtension: {
const unsigned char* current_component =
reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData(
current_component_position, 2, read_buffer));
size_t bytes_in_block = current_component[1];
GIFState exception_state = kGIFSkipBlock;
switch (*current_component) {
case 0xf9:
exception_state = kGIFControlExtension;
// The GIF spec mandates that the GIFControlExtension header block
// length is 4 bytes, and the parser for this block reads 4 bytes,
// so we must enforce that the buffer contains at least this many
// bytes. If the GIF specifies a different length, we allow that, so
// long as it's larger; the additional data will simply be ignored.
bytes_in_block = std::max(bytes_in_block, static_cast<size_t>(4));
break;
// The GIF spec also specifies the lengths of the following two
// extensions' headers (as 12 and 11 bytes, respectively). Because we
// ignore the plain text extension entirely and sanity-check the
// actual length of the application extension header before reading
// it, we allow GIFs to deviate from these values in either direction.
// This is important for real-world compatibility, as GIFs in the wild
// exist with application extension headers that are both shorter and
// longer than 11 bytes.
case 0x01:
// ignoring plain text extension
break;
case 0xff:
exception_state = kGIFApplicationExtension;
break;
case 0xfe:
exception_state = kGIFConsumeComment;
break;
}
if (bytes_in_block)
GETN(bytes_in_block, exception_state);
else
GETN(1, kGIFImageStart);
break;
}
case kGIFConsumeBlock: {
const unsigned char current_component = static_cast<unsigned char>(
reader.GetOneByte(current_component_position));
if (!current_component)
GETN(1, kGIFImageStart);
else
GETN(current_component, kGIFSkipBlock);
break;
}
case kGIFSkipBlock: {
GETN(1, kGIFConsumeBlock);
break;
}
case kGIFControlExtension: {
const unsigned char* current_component =
reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData(
current_component_position, 4, read_buffer));
AddFrameIfNecessary();
GIFFrameContext* current_frame = frames_.back().get();
if (*current_component & 0x1)
current_frame->SetTransparentPixel(current_component[3]);
// We ignore the "user input" bit.
// NOTE: This relies on the values in the FrameDisposalMethod enum
// matching those in the GIF spec!
int disposal_method = ((*current_component) >> 2) & 0x7;
if (disposal_method < 4) {
current_frame->SetDisposalMethod(
static_cast<ImageFrame::DisposalMethod>(disposal_method));
} else if (disposal_method == 4) {
// Some specs say that disposal method 3 is "overwrite previous",
// others that setting the third bit of the field (i.e. method 4) is.
// We map both to the same value.
current_frame->SetDisposalMethod(
ImageFrame::kDisposeOverwritePrevious);
}
current_frame->SetDelayTime(GETINT16(current_component + 1) * 10);
GETN(1, kGIFConsumeBlock);
break;
}
case kGIFCommentExtension: {
const unsigned char current_component = static_cast<unsigned char>(
reader.GetOneByte(current_component_position));
if (current_component)
GETN(current_component, kGIFConsumeComment);
else
GETN(1, kGIFImageStart);
break;
}
case kGIFConsumeComment: {
GETN(1, kGIFCommentExtension);
break;
}
case kGIFApplicationExtension: {
// Check for netscape application extension.
if (bytes_to_consume_ == 11) {
const unsigned char* current_component =
reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData(
current_component_position, 11, read_buffer));
if (!memcmp(current_component, "NETSCAPE2.0", 11) ||
!memcmp(current_component, "ANIMEXTS1.0", 11))
GETN(1, kGIFNetscapeExtensionBlock);
}
if (state_ != kGIFNetscapeExtensionBlock)
GETN(1, kGIFConsumeBlock);
break;
}
// Netscape-specific GIF extension: animation looping.
case kGIFNetscapeExtensionBlock: {
const int current_component = static_cast<unsigned char>(
reader.GetOneByte(current_component_position));
// GIFConsumeNetscapeExtension always reads 3 bytes from the stream; we
// should at least wait for this amount.
if (current_component)
GETN(std::max(3, current_component), kGIFConsumeNetscapeExtension);
else
GETN(1, kGIFImageStart);
break;
}
// Parse netscape-specific application extensions
case kGIFConsumeNetscapeExtension: {
const unsigned char* current_component =
reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData(
current_component_position, 3, read_buffer));
int netscape_extension = current_component[0] & 7;
// Loop entire animation specified # of times. Only read the loop count
// during the first iteration.
if (netscape_extension == 1) {
loop_count_ = GETINT16(current_component + 1);
// Zero loop count is infinite animation loop request.
if (!loop_count_)
loop_count_ = kAnimationLoopInfinite;
GETN(1, kGIFNetscapeExtensionBlock);
} else if (netscape_extension == 2) {
// Wait for specified # of bytes to enter buffer.
// Don't do this, this extension doesn't exist (isn't used at all)
// and doesn't do anything, as our streaming/buffering takes care of
// it all. See http://semmix.pl/color/exgraf/eeg24.htm .
GETN(1, kGIFNetscapeExtensionBlock);
} else {
// 0,3-7 are yet to be defined netscape extension codes
return false;
}
break;
}
case kGIFImageHeader: {
unsigned height, width, x_offset, y_offset;
const unsigned char* current_component =
reinterpret_cast<const unsigned char*>(reader.GetConsecutiveData(
current_component_position, 9, read_buffer));
/* Get image offsets, with respect to the screen origin */
x_offset = GETINT16(current_component);
y_offset = GETINT16(current_component + 2);
/* Get image width and height. */
width = GETINT16(current_component + 4);
height = GETINT16(current_component + 6);
// Some GIF files have frames that don't fit in the specified
// overall image size. For the first frame, we can simply enlarge
// the image size to allow the frame to be visible. We can't do
// this on subsequent frames because the rest of the decoding
// infrastructure assumes the image size won't change as we
// continue decoding, so any subsequent frames that are even
// larger will be cropped.
// Luckily, handling just the first frame is sufficient to deal
// with most cases, e.g. ones where the image size is erroneously
// set to zero, since usually the first frame completely fills
// the image.
if (CurrentFrameIsFirstFrame()) {
screen_height_ = std::max(screen_height_, y_offset + height);
screen_width_ = std::max(screen_width_, x_offset + width);
}
// Inform the client of the final size.
if (!sent_size_to_client_ && client_ &&
!client_->SetSize(screen_width_, screen_height_))
return false;
sent_size_to_client_ = true;
if (query == GIFImageDecoder::kGIFSizeQuery) {
// The decoder needs to stop. Hand back the number of bytes we
// consumed from the buffer minus 9 (the amount we consumed to read
// the header).
SetRemainingBytes(len + 9);
GETN(9, kGIFImageHeader);
return true;
}
AddFrameIfNecessary();
GIFFrameContext* current_frame = frames_.back().get();
current_frame->SetHeaderDefined();
// Work around more broken GIF files that have zero image width or
// height.
if (!height || !width) {
height = screen_height_;
width = screen_width_;
if (!height || !width)
return false;
}
current_frame->SetRect(x_offset, y_offset, width, height);
current_frame->SetInterlaced(current_component[8] & 0x40);
// Overlaying interlaced, transparent GIFs over
// existing image data using the Haeberli display hack
// requires saving the underlying image in order to
// avoid jaggies at the transparency edges. We are
// unprepared to deal with that, so don't display such
// images progressively. Which means only the first
// frame can be progressively displayed.
// FIXME: It is possible that a non-transparent frame
// can be interlaced and progressively displayed.
current_frame->SetProgressiveDisplay(CurrentFrameIsFirstFrame());
const bool is_local_colormap_defined = current_component[8] & 0x80;
if (is_local_colormap_defined) {
// The three low-order bits of currentComponent[8] specify the bits
// per pixel.
const size_t num_colors = 2 << (current_component[8] & 0x7);
current_frame->LocalColorMap().SetTablePositionAndSize(data_position,
num_colors);
GETN(kBytesPerColormapEntry * num_colors, kGIFImageColormap);
break;
}
GETN(1, kGIFLZWStart);
break;
}
case kGIFImageColormap: {
DCHECK(!frames_.IsEmpty());
frames_.back()->LocalColorMap().SetDefined();
GETN(1, kGIFLZWStart);
break;
}
case kGIFSubBlock: {
const size_t bytes_in_block = static_cast<unsigned char>(
reader.GetOneByte(current_component_position));
if (bytes_in_block) {
GETN(bytes_in_block, GIFLZW);
} else {
// Finished parsing one frame; Process next frame.
DCHECK(!frames_.IsEmpty());
// Note that some broken GIF files do not have enough LZW blocks to
// fully decode all rows; we treat this case as "frame complete".
frames_.back()->SetComplete();
GETN(1, kGIFImageStart);
}
break;
}
case kGIFDone: {
parse_completed_ = true;
return true;
}
default:
// We shouldn't ever get here.
return false;
break;
}
}
SetRemainingBytes(len);
return true;
}
void GIFImageReader::SetRemainingBytes(size_t remaining_bytes) {
DCHECK_LE(remaining_bytes, data_->size());
bytes_read_ = data_->size() - remaining_bytes;
}
void GIFImageReader::AddFrameIfNecessary() {
if (frames_.IsEmpty() || frames_.back()->IsComplete())
frames_.push_back(WTF::WrapUnique(new GIFFrameContext(frames_.size())));
}
// FIXME: Move this method to close to doLZW().
bool GIFLZWContext::PrepareToDecode() {
DCHECK(frame_context_->IsDataSizeDefined());
DCHECK(frame_context_->IsHeaderDefined());
// Since we use a codesize of 1 more than the datasize, we need to ensure
// that our datasize is strictly less than the kMaxDictionaryEntryBits.
if (frame_context_->DataSize() >= kMaxDictionaryEntryBits)
return false;
clear_code = 1 << frame_context_->DataSize();
avail = clear_code + 2;
oldcode = -1;
codesize = frame_context_->DataSize() + 1;
codemask = (1 << codesize) - 1;
datum = bits = 0;
ipass = frame_context_->Interlaced() ? 1 : 0;
irow = 0;
// We want to know the longest sequence encodable by a dictionary with
// kMaxDictionaryEntries entries. If we ignore the need to encode the base
// values themselves at the beginning of the dictionary, as well as the need
// for a clear code or a termination code, we could use every entry to
// encode a series of multiple values. If the input value stream looked
// like "AAAAA..." (a long string of just one value), the first dictionary
// entry would encode AA, the next AAA, the next AAAA, and so forth. Thus
// the longest sequence would be kMaxDictionaryEntries + 1 values.
//
// However, we have to account for reserved entries. The first |datasize|
// bits are reserved for the base values, and the next two entries are
// reserved for the clear code and termination code. In theory a GIF can
// set the datasize to 0, meaning we have just two reserved entries, making
// the longest sequence (kMaxDictionaryEntries + 1) - 2 values long. Since
// each value is a byte, this is also the number of bytes in the longest
// encodable sequence.
const size_t kMaxBytes = kMaxDictionaryEntries - 1;
// Now allocate the output buffer. We decode directly into this buffer
// until we have at least one row worth of data, then call outputRow().
// This means worst case we may have (row width - 1) bytes in the buffer
// and then decode a sequence |maxBytes| long to append.
row_buffer.resize(frame_context_->Width() - 1 + kMaxBytes);
row_iter = row_buffer.begin();
rows_remaining = frame_context_->Height();
// Clearing the whole suffix table lets us be more tolerant of bad data.
for (int i = 0; i < clear_code; ++i) {
suffix[i] = i;
suffix_length[i] = 1;
}
return true;
}
} // namespace blink
/* -*- Mode: C; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef GIFImageReader_h
#define GIFImageReader_h
// Define ourselves as the clientPtr. Mozilla just hacked their C++ callback
// class into this old C decoder, so we will too.
#include <memory>
#include "platform/image-decoders/gif/GIFImageDecoder.h"
#include "platform/wtf/Allocator.h"
#include "platform/wtf/Noncopyable.h"
#include "platform/wtf/Vector.h"
namespace blink {
class FastSharedBufferReader;
const int kCLoopCountNotSeen = -2;
// List of possible parsing states.
enum GIFState {
kGIFType,
kGIFGlobalHeader,
kGIFGlobalColormap,
kGIFImageStart,
kGIFImageHeader,
kGIFImageColormap,
kGIFImageBody,
kGIFLZWStart,
GIFLZW,
kGIFSubBlock,
kGIFExtension,
kGIFControlExtension,
kGIFConsumeBlock,
kGIFSkipBlock,
kGIFDone,
kGIFCommentExtension,
kGIFApplicationExtension,
kGIFNetscapeExtensionBlock,
kGIFConsumeNetscapeExtension,
kGIFConsumeComment
};
struct GIFFrameContext;
// LZW decoder state machine.
class GIFLZWContext final {
USING_FAST_MALLOC(GIFLZWContext);
WTF_MAKE_NONCOPYABLE(GIFLZWContext);
public:
GIFLZWContext(blink::GIFImageDecoder* client,
const GIFFrameContext* frame_context)
: codesize(0),
codemask(0),
clear_code(0),
avail(0),
oldcode(0),
firstchar(0),
bits(0),
datum(0),
ipass(0),
irow(0),
rows_remaining(0),
row_iter(0),
client_(client),
frame_context_(frame_context) {}
bool PrepareToDecode();
bool OutputRow(GIFRow::const_iterator row_begin);
bool DoLZW(const unsigned char* block, size_t bytes_in_block);
bool HasRemainingRows() { return rows_remaining; }
private:
enum {
kMaxDictionaryEntryBits = 12,
// 2^kMaxDictionaryEntryBits
kMaxDictionaryEntries = 4096,
};
// LZW decoding states and output states.
int codesize;
int codemask;
int clear_code; // Codeword used to trigger dictionary reset.
int avail; // Index of next available slot in dictionary.
int oldcode;
unsigned char firstchar;
int bits; // Number of unread bits in "datum".
int datum; // 32-bit input buffer.
int ipass; // Interlace pass; Ranges 1-4 if interlaced.
size_t irow; // Current output row, starting at zero.
size_t rows_remaining; // Rows remaining to be output.
unsigned short prefix[kMaxDictionaryEntries];
unsigned char suffix[kMaxDictionaryEntries];
unsigned short suffix_length[kMaxDictionaryEntries];
GIFRow row_buffer; // Single scanline temporary buffer.
GIFRow::iterator row_iter;
// Initialized during construction and read-only.
blink::GIFImageDecoder* client_;
const GIFFrameContext* frame_context_;
};
// Data structure for one LZW block.
struct GIFLZWBlock {
DISALLOW_NEW_EXCEPT_PLACEMENT_NEW();
public:
GIFLZWBlock(size_t position, size_t size)
: block_position(position), block_size(size) {}
size_t block_position;
size_t block_size;
};
class GIFColorMap final {
DISALLOW_NEW();
public:
typedef Vector<blink::ImageFrame::PixelData> Table;
GIFColorMap() : is_defined_(false), position_(0), colors_(0) {}
// Set position and number of colors for the RGB table in the data stream.
void SetTablePositionAndSize(size_t position, size_t colors) {
position_ = position;
colors_ = colors;
}
void SetDefined() { is_defined_ = true; }
bool IsDefined() const { return is_defined_; }
// Build RGBA table using the data stream.
void BuildTable(blink::FastSharedBufferReader*);
const Table& GetTable() const { return table_; }
private:
bool is_defined_;
size_t position_;
size_t colors_;
Table table_;
};
// LocalFrame output state machine.
struct GIFFrameContext {
USING_FAST_MALLOC(GIFFrameContext);
WTF_MAKE_NONCOPYABLE(GIFFrameContext);
public:
GIFFrameContext(int id)
: frame_id_(id),
x_offset_(0),
y_offset_(0),
width_(0),
height_(0),
transparent_pixel_(kNotFound),
disposal_method_(blink::ImageFrame::kDisposeNotSpecified),
data_size_(0),
progressive_display_(false),
interlaced_(false),
delay_time_(0),
current_lzw_block_(0),
is_complete_(false),
is_header_defined_(false),
is_data_size_defined_(false) {}
~GIFFrameContext() {}
void AddLzwBlock(size_t position, size_t size) {
lzw_blocks_.push_back(GIFLZWBlock(position, size));
}
bool Decode(blink::FastSharedBufferReader*,
blink::GIFImageDecoder* client,
bool* frame_decoded);
int FrameId() const { return frame_id_; }
void SetRect(unsigned x, unsigned y, unsigned width, unsigned height) {
x_offset_ = x;
y_offset_ = y;
width_ = width;
height_ = height;
}
blink::IntRect FrameRect() const {
return blink::IntRect(x_offset_, y_offset_, width_, height_);
}
unsigned XOffset() const { return x_offset_; }
unsigned YOffset() const { return y_offset_; }
unsigned Width() const { return width_; }
unsigned Height() const { return height_; }
size_t TransparentPixel() const { return transparent_pixel_; }
void SetTransparentPixel(size_t pixel) { transparent_pixel_ = pixel; }
blink::ImageFrame::DisposalMethod GetDisposalMethod() const {
return disposal_method_;
}
void SetDisposalMethod(blink::ImageFrame::DisposalMethod disposal_method) {
disposal_method_ = disposal_method;
}
unsigned DelayTime() const { return delay_time_; }
void SetDelayTime(unsigned delay) { delay_time_ = delay; }
bool IsComplete() const { return is_complete_; }
void SetComplete() { is_complete_ = true; }
bool IsHeaderDefined() const { return is_header_defined_; }
void SetHeaderDefined() { is_header_defined_ = true; }
bool IsDataSizeDefined() const { return is_data_size_defined_; }
int DataSize() const { return data_size_; }
void SetDataSize(int size) {
data_size_ = size;
is_data_size_defined_ = true;
}
bool ProgressiveDisplay() const { return progressive_display_; }
void SetProgressiveDisplay(bool progressive_display) {
progressive_display_ = progressive_display;
}
bool Interlaced() const { return interlaced_; }
void SetInterlaced(bool interlaced) { interlaced_ = interlaced; }
void ClearDecodeState() { lzw_context_.reset(); }
const GIFColorMap& LocalColorMap() const { return local_color_map_; }
GIFColorMap& LocalColorMap() { return local_color_map_; }
private:
int frame_id_;
unsigned x_offset_;
unsigned y_offset_; // With respect to "screen" origin.
unsigned width_;
unsigned height_;
size_t transparent_pixel_; // Index of transparent pixel. Value is kNotFound
// if there is no transparent pixel.
blink::ImageFrame::DisposalMethod
disposal_method_; // Restore to background, leave in place, etc.
int data_size_;
bool progressive_display_; // If true, do Haeberli interlace hack.
bool interlaced_; // True, if scanlines arrive interlaced order.
unsigned delay_time_; // Display time, in milliseconds, for this image in a
// multi-image GIF.
std::unique_ptr<GIFLZWContext> lzw_context_;
Vector<GIFLZWBlock> lzw_blocks_; // LZW blocks for this frame.
GIFColorMap local_color_map_;
size_t current_lzw_block_;
bool is_complete_;
bool is_header_defined_;
bool is_data_size_defined_;
};
class PLATFORM_EXPORT GIFImageReader final {
USING_FAST_MALLOC(GIFImageReader);
WTF_MAKE_NONCOPYABLE(GIFImageReader);
public:
GIFImageReader(blink::GIFImageDecoder* client = 0)
: client_(client),
state_(kGIFType),
// Number of bytes for GIF type, either "GIF87a" or "GIF89a".
bytes_to_consume_(6),
bytes_read_(0),
version_(0),
screen_width_(0),
screen_height_(0),
sent_size_to_client_(false),
loop_count_(kCLoopCountNotSeen),
parse_completed_(false) {}
~GIFImageReader() {}
void SetData(RefPtr<blink::SegmentReader> data) { data_ = std::move(data); }
bool Parse(blink::GIFImageDecoder::GIFParseQuery);
bool Decode(size_t frame_index);
size_t ImagesCount() const {
if (frames_.IsEmpty())
return 0;
// This avoids counting an empty frame when the file is truncated right
// after GIFControlExtension but before GIFImageHeader.
// FIXME: This extra complexity is not necessary and we should just report
// m_frames.size().
return frames_.back()->IsHeaderDefined() ? frames_.size()
: frames_.size() - 1;
}
int LoopCount() const { return loop_count_; }
const GIFColorMap& GlobalColorMap() const { return global_color_map_; }
const GIFFrameContext* FrameContext(size_t index) const {
return index < frames_.size() ? frames_[index].get() : 0;
}
bool ParseCompleted() const { return parse_completed_; }
void ClearDecodeState(size_t index) { frames_[index]->ClearDecodeState(); }
private:
bool ParseData(size_t data_position,
size_t len,
blink::GIFImageDecoder::GIFParseQuery);
void SetRemainingBytes(size_t);
void AddFrameIfNecessary();
bool CurrentFrameIsFirstFrame() const {
return frames_.IsEmpty() ||
(frames_.size() == 1u && !frames_[0]->IsComplete());
}
blink::GIFImageDecoder* client_;
// Parsing state machine.
GIFState state_; // Current decoder master state.
size_t bytes_to_consume_; // Number of bytes to consume for next stage of
// parsing.
size_t bytes_read_; // Number of bytes processed.
// Global (multi-image) state.
int version_; // Either 89 for GIF89 or 87 for GIF87.
unsigned screen_width_; // Logical screen width & height.
unsigned screen_height_;
bool sent_size_to_client_;
GIFColorMap global_color_map_;
int loop_count_; // Netscape specific extension block to control the number
// of animation loops a GIF renders.
Vector<std::unique_ptr<GIFFrameContext>> frames_;
RefPtr<blink::SegmentReader> data_;
bool parse_completed_;
};
} // namespace blink
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment