Implement chromium's TLS.

Using one system TLS to implement multiple chrome's TLS slots.

BUG=264406

Review URL: https://codereview.chromium.org/60743004

git-svn-id: svn://svn.chromium.org/chrome/trunk/src@241144 0039d316-1c4b-4281-b951-d872f2087c98
parent 7d501ce0
...@@ -589,6 +589,7 @@ ...@@ -589,6 +589,7 @@
'threading/thread_id_name_manager.h', 'threading/thread_id_name_manager.h',
'threading/thread_local.h', 'threading/thread_local.h',
'threading/thread_local_posix.cc', 'threading/thread_local_posix.cc',
'threading/thread_local_storage.cc',
'threading/thread_local_storage.h', 'threading/thread_local_storage.h',
'threading/thread_local_storage_posix.cc', 'threading/thread_local_storage_posix.cc',
'threading/thread_local_storage_win.cc', 'threading/thread_local_storage_win.cc',
......
This diff is collapsed.
...@@ -8,12 +8,71 @@ ...@@ -8,12 +8,71 @@
#include "base/base_export.h" #include "base/base_export.h"
#include "base/basictypes.h" #include "base/basictypes.h"
#if defined(OS_POSIX) #if defined(OS_WIN)
#include <windows.h>
#elif defined(OS_POSIX)
#include <pthread.h> #include <pthread.h>
#endif #endif
namespace base { namespace base {
namespace internal {
// WARNING: You should *NOT* be using this class directly.
// PlatformThreadLocalStorage is low-level abstraction to the OS's TLS
// interface, you should instead be using ThreadLocalStorage::StaticSlot/Slot.
class BASE_EXPORT PlatformThreadLocalStorage {
public:
#if defined(OS_WIN)
typedef unsigned long TLSKey;
enum { TLS_KEY_OUT_OF_INDEXES = TLS_OUT_OF_INDEXES };
#elif defined(OS_POSIX)
typedef pthread_key_t TLSKey;
// The following is a "reserved key" which is used in our generic Chromium
// ThreadLocalStorage implementation. We expect that an OS will not return
// such a key, but if it is returned (i.e., the OS tries to allocate it) we
// will just request another key.
enum { TLS_KEY_OUT_OF_INDEXES = 0x7FFFFFFF };
#endif
// The following methods need to be supported on each OS platform, so that
// the Chromium ThreadLocalStore functionality can be constructed.
// Chromium will use these methods to acquire a single OS slot, and then use
// that to support a much larger number of Chromium slots (independent of the
// OS restrictions).
// The following returns true if it successfully is able to return an OS
// key in |key|.
static bool AllocTLS(TLSKey* key);
// Note: FreeTLS() doesn't have to be called, it is fine with this leak, OS
// might not reuse released slot, you might just reset the TLS value with
// SetTLSValue().
static void FreeTLS(TLSKey key);
static void SetTLSValue(TLSKey key, void* value);
static void* GetTLSValue(TLSKey key);
// Each platform (OS implementation) is required to call this method on each
// terminating thread when the thread is about to terminate. This method
// will then call all registered destructors for slots in Chromium
// ThreadLocalStorage, until there are no slot values remaining as having
// been set on this thread.
// Destructors may end up being called multiple times on a terminating
// thread, as other destructors may re-set slots that were previously
// destroyed.
#if defined(OS_WIN)
// Since Windows which doesn't support TLS destructor, the implementation
// should use GetTLSValue() to retrieve the value of TLS slot.
static void OnThreadExit();
#elif defined(OS_POSIX)
// |Value| is the data stored in TLS slot, The implementation can't use
// GetTLSValue() to retrieve the value of slot as it has already been reset
// in Posix.
static void OnThreadExit(void* value);
#endif
};
} // namespace internal
// Wrapper for thread local storage. This class doesn't do much except provide // Wrapper for thread local storage. This class doesn't do much except provide
// an API for portability. // an API for portability.
class BASE_EXPORT ThreadLocalStorage { class BASE_EXPORT ThreadLocalStorage {
...@@ -60,12 +119,7 @@ class BASE_EXPORT ThreadLocalStorage { ...@@ -60,12 +119,7 @@ class BASE_EXPORT ThreadLocalStorage {
// The internals of this struct should be considered private. // The internals of this struct should be considered private.
bool initialized_; bool initialized_;
#if defined(OS_WIN)
int slot_; int slot_;
#elif defined(OS_POSIX)
pthread_key_t key_;
#endif
}; };
// A convenience wrapper around StaticSlot with a constructor. Can be used // A convenience wrapper around StaticSlot with a constructor. Can be used
...@@ -77,11 +131,8 @@ class BASE_EXPORT ThreadLocalStorage { ...@@ -77,11 +131,8 @@ class BASE_EXPORT ThreadLocalStorage {
private: private:
using StaticSlot::initialized_; using StaticSlot::initialized_;
#if defined(OS_WIN)
using StaticSlot::slot_; using StaticSlot::slot_;
#elif defined(OS_POSIX)
using StaticSlot::key_;
#endif
DISALLOW_COPY_AND_ASSIGN(Slot); DISALLOW_COPY_AND_ASSIGN(Slot);
}; };
......
...@@ -8,42 +8,25 @@ ...@@ -8,42 +8,25 @@
namespace base { namespace base {
ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) { namespace internal {
initialized_ = false;
key_ = 0;
Initialize(destructor);
}
bool ThreadLocalStorage::StaticSlot::Initialize(TLSDestructorFunc destructor) {
DCHECK(!initialized_);
int error = pthread_key_create(&key_, destructor);
if (error) {
NOTREACHED();
return false;
}
initialized_ = true; bool PlatformThreadLocalStorage::AllocTLS(TLSKey* key) {
return true; return !pthread_key_create(key,
base::internal::PlatformThreadLocalStorage::OnThreadExit);
} }
void ThreadLocalStorage::StaticSlot::Free() { void PlatformThreadLocalStorage::FreeTLS(TLSKey key) {
DCHECK(initialized_); DCHECK_EQ(pthread_key_delete(key), 0);
int error = pthread_key_delete(key_);
if (error)
NOTREACHED();
initialized_ = false;
} }
void* ThreadLocalStorage::StaticSlot::Get() const { void* PlatformThreadLocalStorage::GetTLSValue(TLSKey key) {
DCHECK(initialized_); return pthread_getspecific(key);
return pthread_getspecific(key_);
} }
void ThreadLocalStorage::StaticSlot::Set(void* value) { void PlatformThreadLocalStorage::SetTLSValue(TLSKey key, void* value) {
DCHECK(initialized_); DCHECK_EQ(pthread_setspecific(key, value), 0);
int error = pthread_setspecific(key_, value);
if (error)
NOTREACHED();
} }
} // namespace internal
} // namespace base } // namespace base
...@@ -8,201 +8,33 @@ ...@@ -8,201 +8,33 @@
#include "base/logging.h" #include "base/logging.h"
namespace {
// In order to make TLS destructors work, we need to keep function
// pointers to the destructor for each TLS that we allocate.
// We make this work by allocating a single OS-level TLS, which
// contains an array of slots for the application to use. In
// parallel, we also allocate an array of destructors, which we
// keep track of and call when threads terminate.
// g_native_tls_key is the one native TLS that we use. It stores our table.
long g_native_tls_key = TLS_OUT_OF_INDEXES;
// g_last_used_tls_key is the high-water-mark of allocated thread local storage.
// Each allocation is an index into our g_tls_destructors[]. Each such index is
// assigned to the instance variable slot_ in a ThreadLocalStorage::Slot
// instance. We reserve the value slot_ == 0 to indicate that the corresponding
// instance of ThreadLocalStorage::Slot has been freed (i.e., destructor called,
// etc.). This reserved use of 0 is then stated as the initial value of
// g_last_used_tls_key, so that the first issued index will be 1.
long g_last_used_tls_key = 0;
// The maximum number of 'slots' in our thread local storage stack.
const int kThreadLocalStorageSize = 64;
// The maximum number of times to try to clear slots by calling destructors.
// Use pthread naming convention for clarity.
const int kMaxDestructorIterations = kThreadLocalStorageSize;
// An array of destructor function pointers for the slots. If a slot has a
// destructor, it will be stored in its corresponding entry in this array.
// The elements are volatile to ensure that when the compiler reads the value
// to potentially call the destructor, it does so once, and that value is tested
// for null-ness and then used. Yes, that would be a weird de-optimization,
// but I can imagine some register machines where it was just as easy to
// re-fetch an array element, and I want to be sure a call to free the key
// (i.e., null out the destructor entry) that happens on a separate thread can't
// hurt the racy calls to the destructors on another thread.
volatile base::ThreadLocalStorage::TLSDestructorFunc
g_tls_destructors[kThreadLocalStorageSize];
void** ConstructTlsVector() {
if (g_native_tls_key == TLS_OUT_OF_INDEXES) {
long value = TlsAlloc();
DCHECK(value != TLS_OUT_OF_INDEXES);
// Atomically test-and-set the tls_key. If the key is TLS_OUT_OF_INDEXES,
// go ahead and set it. Otherwise, do nothing, as another
// thread already did our dirty work.
if (TLS_OUT_OF_INDEXES != InterlockedCompareExchange(
&g_native_tls_key, value, TLS_OUT_OF_INDEXES)) {
// We've been shortcut. Another thread replaced g_native_tls_key first so
// we need to destroy our index and use the one the other thread got
// first.
TlsFree(value);
}
}
DCHECK(!TlsGetValue(g_native_tls_key));
// Some allocators, such as TCMalloc, make use of thread local storage.
// As a result, any attempt to call new (or malloc) will lazily cause such a
// system to initialize, which will include registering for a TLS key. If we
// are not careful here, then that request to create a key will call new back,
// and we'll have an infinite loop. We avoid that as follows:
// Use a stack allocated vector, so that we don't have dependence on our
// allocator until our service is in place. (i.e., don't even call new until
// after we're setup)
void* stack_allocated_tls_data[kThreadLocalStorageSize];
memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
// Ensure that any rentrant calls change the temp version.
TlsSetValue(g_native_tls_key, stack_allocated_tls_data);
// Allocate an array to store our data.
void** tls_data = new void*[kThreadLocalStorageSize];
memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
TlsSetValue(g_native_tls_key, tls_data);
return tls_data;
}
// Called when we terminate a thread, this function calls any TLS destructors
// that are pending for this thread.
void WinThreadExit() {
if (g_native_tls_key == TLS_OUT_OF_INDEXES)
return;
void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key));
// Maybe we have never initialized TLS for this thread.
if (!tls_data)
return;
// Some allocators, such as TCMalloc, use TLS. As a result, when a thread
// terminates, one of the destructor calls we make may be to shut down an
// allocator. We have to be careful that after we've shutdown all of the
// known destructors (perchance including an allocator), that we don't call
// the allocator and cause it to resurrect itself (with no possibly destructor
// call to follow). We handle this problem as follows:
// Switch to using a stack allocated vector, so that we don't have dependence
// on our allocator after we have called all g_tls_destructors. (i.e., don't
// even call delete[] after we're done with destructors.)
void* stack_allocated_tls_data[kThreadLocalStorageSize];
memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
// Ensure that any re-entrant calls change the temp version.
TlsSetValue(g_native_tls_key, stack_allocated_tls_data);
delete[] tls_data; // Our last dependence on an allocator.
int remaining_attempts = kMaxDestructorIterations;
bool need_to_scan_destructors = true;
while (need_to_scan_destructors) {
need_to_scan_destructors = false;
// Try to destroy the first-created-slot (which is slot 1) in our last
// destructor call. That user was able to function, and define a slot with
// no other services running, so perhaps it is a basic service (like an
// allocator) and should also be destroyed last. If we get the order wrong,
// then we'll itterate several more times, so it is really not that
// critical (but it might help).
for (int slot = g_last_used_tls_key; slot > 0; --slot) {
void* value = stack_allocated_tls_data[slot];
if (value == NULL)
continue;
base::ThreadLocalStorage::TLSDestructorFunc destructor =
g_tls_destructors[slot];
if (destructor == NULL)
continue;
stack_allocated_tls_data[slot] = NULL; // pre-clear the slot.
destructor(value);
// Any destructor might have called a different service, which then set
// a different slot to a non-NULL value. Hence we need to check
// the whole vector again. This is a pthread standard.
need_to_scan_destructors = true;
}
if (--remaining_attempts <= 0) {
NOTREACHED(); // Destructors might not have been called.
break;
}
}
// Remove our stack allocated vector.
TlsSetValue(g_native_tls_key, NULL);
}
} // namespace
namespace base { namespace base {
ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) { namespace internal {
initialized_ = false;
slot_ = 0;
Initialize(destructor);
}
bool ThreadLocalStorage::StaticSlot::Initialize(TLSDestructorFunc destructor) {
if (g_native_tls_key == TLS_OUT_OF_INDEXES || !TlsGetValue(g_native_tls_key))
ConstructTlsVector();
// Grab a new slot. bool PlatformThreadLocalStorage::AllocTLS(TLSKey* key) {
slot_ = InterlockedIncrement(&g_last_used_tls_key); TLSKey value = TlsAlloc();
DCHECK_GT(slot_, 0); if (value != TLS_OUT_OF_INDEXES) {
if (slot_ >= kThreadLocalStorageSize) { *key = value;
NOTREACHED(); return true;
return false;
} }
return false;
// Setup our destructor.
g_tls_destructors[slot_] = destructor;
initialized_ = true;
return true;
} }
void ThreadLocalStorage::StaticSlot::Free() { void PlatformThreadLocalStorage::FreeTLS(TLSKey key) {
// At this time, we don't reclaim old indices for TLS slots. DCHECK(TlsFree(key));
// So all we need to do is wipe the destructor.
DCHECK_GT(slot_, 0);
DCHECK_LT(slot_, kThreadLocalStorageSize);
g_tls_destructors[slot_] = NULL;
slot_ = 0;
initialized_ = false;
} }
void* ThreadLocalStorage::StaticSlot::Get() const { void* PlatformThreadLocalStorage::GetTLSValue(TLSKey key) {
void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key)); return TlsGetValue(key);
if (!tls_data)
tls_data = ConstructTlsVector();
DCHECK_GT(slot_, 0);
DCHECK_LT(slot_, kThreadLocalStorageSize);
return tls_data[slot_];
} }
void ThreadLocalStorage::StaticSlot::Set(void* value) { void PlatformThreadLocalStorage::SetTLSValue(TLSKey key, void* value) {
void** tls_data = static_cast<void**>(TlsGetValue(g_native_tls_key)); DCHECK(TlsSetValue(key, value));
if (!tls_data)
tls_data = ConstructTlsVector();
DCHECK_GT(slot_, 0);
DCHECK_LT(slot_, kThreadLocalStorageSize);
tls_data[slot_] = value;
} }
} // namespace internal
} // namespace base } // namespace base
// Thread Termination Callbacks. // Thread Termination Callbacks.
...@@ -233,7 +65,7 @@ void NTAPI OnThreadExit(PVOID module, DWORD reason, PVOID reserved) { ...@@ -233,7 +65,7 @@ void NTAPI OnThreadExit(PVOID module, DWORD reason, PVOID reserved) {
// On XP SP0 & SP1, the DLL_PROCESS_ATTACH is never seen. It is sent on SP2+ // On XP SP0 & SP1, the DLL_PROCESS_ATTACH is never seen. It is sent on SP2+
// and on W2K and W2K3. So don't assume it is sent. // and on W2K and W2K3. So don't assume it is sent.
if (DLL_THREAD_DETACH == reason || DLL_PROCESS_DETACH == reason) if (DLL_THREAD_DETACH == reason || DLL_PROCESS_DETACH == reason)
WinThreadExit(); base::internal::PlatformThreadLocalStorage::OnThreadExit();
} }
// .CRT$XLA to .CRT$XLZ is an array of PIMAGE_TLS_CALLBACK pointers that are // .CRT$XLA to .CRT$XLZ is an array of PIMAGE_TLS_CALLBACK pointers that are
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment