Commit 9de294cd authored by Alessio Bazzica's avatar Alessio Bazzica Committed by Commit Bot

Adding part of the rnnoise library in 3rd party

This CL adds part of the rnnoise library in 3rd party.
What is retained are pretrained parameters and a few
functions implementing a recurrent neural network.

Change-Id: I66c55958d13b7f120aa508f6d7afd7f13f59f659
Reviewed-on: https://chromium-review.googlesource.com/931553Reviewed-by: default avatarJohn Abd-El-Malek <jam@chromium.org>
Commit-Queue: Ale Bzk <alessiob@chromium.org>
Cr-Commit-Position: refs/heads/master@{#539174}
parent 199cf63e
Copyright (c) 2017, Mozilla
Copyright (c) 2007-2017, Jean-Marc Valin
Copyright (c) 2005-2017, Xiph.Org Foundation
Copyright (c) 2003-2004, Mark Borgerding
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.Org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
alessiob@chromium.org
aleloi@chromium.org
Name: Recurrent neural network for audio noise reduction
Short Name: rnnoise
URL: https://github.com/xiph/rnnoise
Version: 91ef401
Date: Oct 10, 2017
Revision:
License: BSD 3-Clause
License File: COPYING
Security Critical: no
License Android Compatible:
Description:
RNNoise is a noise suppression library based on a recurrent neural network.
The library is used for speech processing in WebRTC.
Local Modifications:
Only retaining rnn.c, rnn_data.c, tansig_table.h from src/ and COPYING.
/* Copyright (c) 2008-2011 Octasic Inc.
2012-2017 Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "opus_types.h"
#include "common.h"
#include "arch.h"
#include "tansig_table.h"
#include "rnn.h"
#include "rnn_data.h"
#include <stdio.h>
static OPUS_INLINE float tansig_approx(float x)
{
int i;
float y, dy;
float sign=1;
/* Tests are reversed to catch NaNs */
if (!(x<8))
return 1;
if (!(x>-8))
return -1;
#ifndef FIXED_POINT
/* Another check in case of -ffast-math */
if (celt_isnan(x))
return 0;
#endif
if (x<0)
{
x=-x;
sign=-1;
}
i = (int)floor(.5f+25*x);
x -= .04f*i;
y = tansig_table[i];
dy = 1-y*y;
y = y + x*dy*(1 - y*x);
return sign*y;
}
static OPUS_INLINE float sigmoid_approx(float x)
{
return .5 + .5*tansig_approx(.5*x);
}
static OPUS_INLINE float relu(float x)
{
return x < 0 ? 0 : x;
}
void compute_dense(const DenseLayer *layer, float *output, const float *input)
{
int i, j;
int N, M;
int stride;
M = layer->nb_inputs;
N = layer->nb_neurons;
stride = N;
for (i=0;i<N;i++)
{
/* Compute update gate. */
float sum = layer->bias[i];
for (j=0;j<M;j++)
sum += layer->input_weights[j*stride + i]*input[j];
output[i] = WEIGHTS_SCALE*sum;
}
if (layer->activation == ACTIVATION_SIGMOID) {
for (i=0;i<N;i++)
output[i] = sigmoid_approx(output[i]);
} else if (layer->activation == ACTIVATION_TANH) {
for (i=0;i<N;i++)
output[i] = tansig_approx(output[i]);
} else if (layer->activation == ACTIVATION_RELU) {
for (i=0;i<N;i++)
output[i] = relu(output[i]);
} else {
*(int*)0=0;
}
}
void compute_gru(const GRULayer *gru, float *state, const float *input)
{
int i, j;
int N, M;
int stride;
float z[MAX_NEURONS];
float r[MAX_NEURONS];
float h[MAX_NEURONS];
M = gru->nb_inputs;
N = gru->nb_neurons;
stride = 3*N;
for (i=0;i<N;i++)
{
/* Compute update gate. */
float sum = gru->bias[i];
for (j=0;j<M;j++)
sum += gru->input_weights[j*stride + i]*input[j];
for (j=0;j<N;j++)
sum += gru->recurrent_weights[j*stride + i]*state[j];
z[i] = sigmoid_approx(WEIGHTS_SCALE*sum);
}
for (i=0;i<N;i++)
{
/* Compute reset gate. */
float sum = gru->bias[N + i];
for (j=0;j<M;j++)
sum += gru->input_weights[N + j*stride + i]*input[j];
for (j=0;j<N;j++)
sum += gru->recurrent_weights[N + j*stride + i]*state[j];
r[i] = sigmoid_approx(WEIGHTS_SCALE*sum);
}
for (i=0;i<N;i++)
{
/* Compute output. */
float sum = gru->bias[2*N + i];
for (j=0;j<M;j++)
sum += gru->input_weights[2*N + j*stride + i]*input[j];
for (j=0;j<N;j++)
sum += gru->recurrent_weights[2*N + j*stride + i]*state[j]*r[j];
if (gru->activation == ACTIVATION_SIGMOID) sum = sigmoid_approx(WEIGHTS_SCALE*sum);
else if (gru->activation == ACTIVATION_TANH) sum = tansig_approx(WEIGHTS_SCALE*sum);
else if (gru->activation == ACTIVATION_RELU) sum = relu(WEIGHTS_SCALE*sum);
else *(int*)0=0;
h[i] = z[i]*state[i] + (1-z[i])*sum;
}
for (i=0;i<N;i++)
state[i] = h[i];
}
#define INPUT_SIZE 42
void compute_rnn(RNNState *rnn, float *gains, float *vad, const float *input) {
int i;
float dense_out[MAX_NEURONS];
float noise_input[MAX_NEURONS*3];
float denoise_input[MAX_NEURONS*3];
compute_dense(&input_dense, dense_out, input);
compute_gru(&vad_gru, rnn->vad_gru_state, dense_out);
compute_dense(&vad_output, vad, rnn->vad_gru_state);
for (i=0;i<INPUT_DENSE_SIZE;i++) noise_input[i] = dense_out[i];
for (i=0;i<VAD_GRU_SIZE;i++) noise_input[i+INPUT_DENSE_SIZE] = rnn->vad_gru_state[i];
for (i=0;i<INPUT_SIZE;i++) noise_input[i+INPUT_DENSE_SIZE+VAD_GRU_SIZE] = input[i];
compute_gru(&noise_gru, rnn->noise_gru_state, noise_input);
for (i=0;i<VAD_GRU_SIZE;i++) denoise_input[i] = rnn->vad_gru_state[i];
for (i=0;i<NOISE_GRU_SIZE;i++) denoise_input[i+VAD_GRU_SIZE] = rnn->noise_gru_state[i];
for (i=0;i<INPUT_SIZE;i++) denoise_input[i+VAD_GRU_SIZE+NOISE_GRU_SIZE] = input[i];
compute_gru(&denoise_gru, rnn->denoise_gru_state, denoise_input);
compute_dense(&denoise_output, gains, rnn->denoise_gru_state);
}
This diff is collapsed.
/* This file is auto-generated by gen_tables */
static const float tansig_table[201] = {
0.000000f, 0.039979f, 0.079830f, 0.119427f, 0.158649f,
0.197375f, 0.235496f, 0.272905f, 0.309507f, 0.345214f,
0.379949f, 0.413644f, 0.446244f, 0.477700f, 0.507977f,
0.537050f, 0.564900f, 0.591519f, 0.616909f, 0.641077f,
0.664037f, 0.685809f, 0.706419f, 0.725897f, 0.744277f,
0.761594f, 0.777888f, 0.793199f, 0.807569f, 0.821040f,
0.833655f, 0.845456f, 0.856485f, 0.866784f, 0.876393f,
0.885352f, 0.893698f, 0.901468f, 0.908698f, 0.915420f,
0.921669f, 0.927473f, 0.932862f, 0.937863f, 0.942503f,
0.946806f, 0.950795f, 0.954492f, 0.957917f, 0.961090f,
0.964028f, 0.966747f, 0.969265f, 0.971594f, 0.973749f,
0.975743f, 0.977587f, 0.979293f, 0.980869f, 0.982327f,
0.983675f, 0.984921f, 0.986072f, 0.987136f, 0.988119f,
0.989027f, 0.989867f, 0.990642f, 0.991359f, 0.992020f,
0.992631f, 0.993196f, 0.993718f, 0.994199f, 0.994644f,
0.995055f, 0.995434f, 0.995784f, 0.996108f, 0.996407f,
0.996682f, 0.996937f, 0.997172f, 0.997389f, 0.997590f,
0.997775f, 0.997946f, 0.998104f, 0.998249f, 0.998384f,
0.998508f, 0.998623f, 0.998728f, 0.998826f, 0.998916f,
0.999000f, 0.999076f, 0.999147f, 0.999213f, 0.999273f,
0.999329f, 0.999381f, 0.999428f, 0.999472f, 0.999513f,
0.999550f, 0.999585f, 0.999617f, 0.999646f, 0.999673f,
0.999699f, 0.999722f, 0.999743f, 0.999763f, 0.999781f,
0.999798f, 0.999813f, 0.999828f, 0.999841f, 0.999853f,
0.999865f, 0.999875f, 0.999885f, 0.999893f, 0.999902f,
0.999909f, 0.999916f, 0.999923f, 0.999929f, 0.999934f,
0.999939f, 0.999944f, 0.999948f, 0.999952f, 0.999956f,
0.999959f, 0.999962f, 0.999965f, 0.999968f, 0.999970f,
0.999973f, 0.999975f, 0.999977f, 0.999978f, 0.999980f,
0.999982f, 0.999983f, 0.999984f, 0.999986f, 0.999987f,
0.999988f, 0.999989f, 0.999990f, 0.999990f, 0.999991f,
0.999992f, 0.999992f, 0.999993f, 0.999994f, 0.999994f,
0.999994f, 0.999995f, 0.999995f, 0.999996f, 0.999996f,
0.999996f, 0.999997f, 0.999997f, 0.999997f, 0.999997f,
0.999997f, 0.999998f, 0.999998f, 0.999998f, 0.999998f,
0.999998f, 0.999998f, 0.999999f, 0.999999f, 0.999999f,
0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
1.000000f,
};
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment